

PhD student Nicola Albarella

Control Architectures for Advanced Driving Assistance Systems

Tutor: Prof. Stefania SantiniCycle: XXXVYear: THIRD

Background information

- MSc degree: Automation Engineering
- Research group: Daisy Lab (Prof. Stefania Santini)
- PhD start date 01/11/2019 end date 31/10/2022
- Scholarship type: company-funded scholarship
- Partner company: Kineton S.r.l.
- Periods abroad: 10/01/2022 10/09/2022 at Autonomous
 Driving Lab, University of Tartu, Tartu, Estonia

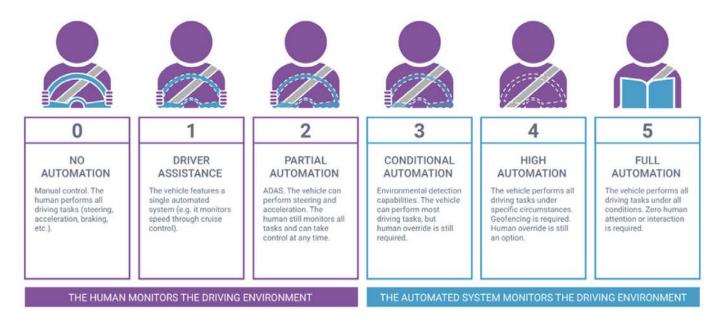
Summary of study activities

- Ad hoc courses: Safety Critical Systems for Railway Traffic Management, Strategic Orientation for STEM Research & Writing, Machine Learning.
- M.Sc. courses: Embedded Systems, Formal Methods, Big Data Analytics and Business Intelligence, Control Systems for Autonomous Ground Vehicles.
- Seminars: Patent searching best practices with IEEE Xplore; GDPR basics for computer scientists; At the Nexus of Big Data, Machine Intelligence, and Human Cognition; Exploiting Deep Learning and Probabilistic Modeling for Behavior Analytics; Approaches to Graph Machine Learning; Big Data and Computational Linguistics; Risk assessment in real life: experiences from the railway domain.

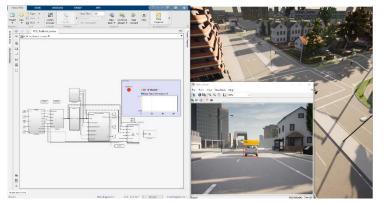
Research area

 Advanced Driving Assistance Systems (ADAS) and Autonomous driving

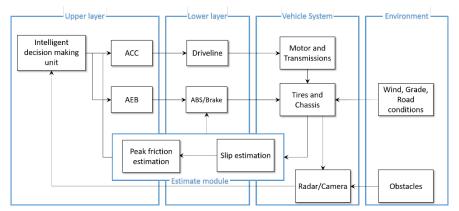
Design architectures to push assisted driving towards autonomous driving



Research results



Design and experimental validation of a camera based Forward Collision Warning [P2]



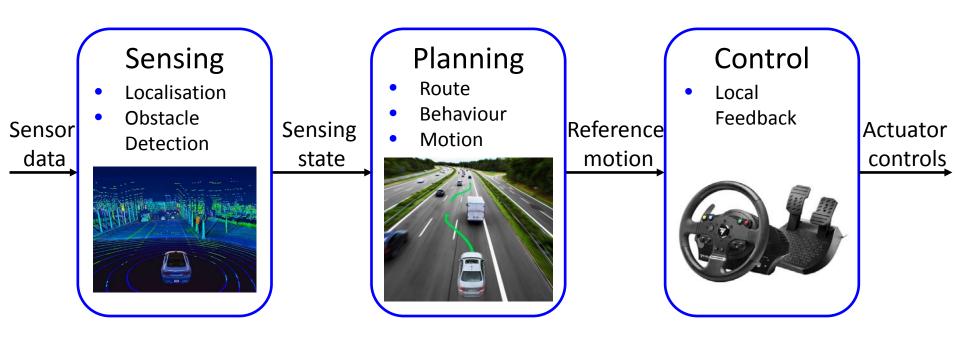
Embedding of road-tire grip data into longitudinal ADAS, resulting in improved safety over the state of the art [P1] [P3]

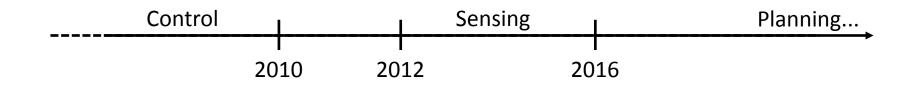
Design of a novel hierarchical motion planning architecture for autonomous driving

Research products

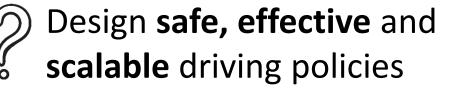
[P1]	S.Santini; N. Albarella; V.M. Arricale; R. Brancati; A. Sakhnevych;
	On-Board Road Friction Estimation Technique for Autonomous Driving Vehicle-Following
	Maneuvers,
	Applied Sciences,
	2021,11,2197. doi: https://doi.org/10.3390/app11052197
[P2]	N. Albarella; F. Masuccio; L. Novella; M. Tufo; G. Fiengo;
	A Forward-Collision Warning System for Electric Vehicles: Experimental Validation in Virtual and
	Real Environment,
	Energies,
	2021,14,4872. doi: https://doi.org/10.3390/en14164872
[P3]	N. Albarella; V.M. Arricale; A. Maiorano; L. Mosconi; G. Napolitano Dell'Annunziata; E. Rocca;
	Improved Anti-Lock Braking System With Real-Time Friction Detection to Maximize Vehicle
	Performance,
	International Design Engineering Technical Conferences & Computers and Information in
	Engineering Conference,
	Aug. 2021, doi: https://doi.org/10.1115/DETC2021-68431
	Aug. 2021, uoi. https://uoi.org/10.1113/DETC2021-00451

PhD thesis overview





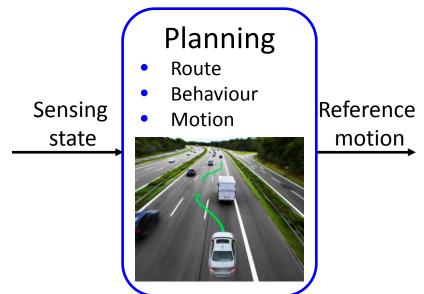
PhD thesis overview



$$\pi: S \to A$$

$$s = \begin{bmatrix} \xi_{ego}, \xi_{world} \end{bmatrix} \in S$$

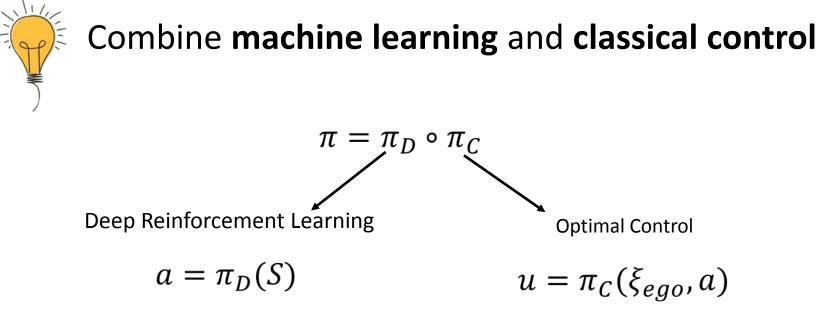
$$\uparrow \qquad \uparrow$$
known unpredictable



State of the art planning:

- − FSM, Petri Nets, Fuzzy Logic, RRT, A^* , etc. → not scalable
- Mixed Integer Programming, Optimization based planning → prediction needed
- Game theory → prediction needed
- Machine Learning → unsafe

Hierarchical planning



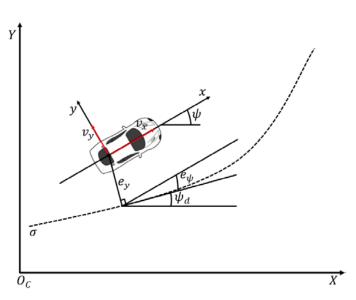
Learning behaviours from data No need for prediction on ξ_{world} Smaller search space Better signal to noise ratio

π_C : Motion Planning

Mapping from discrete behaviours controls

Nonlinear Model Predictive Controller (NMPC)

$$\dot{\sigma} = \frac{v \cos(e_{\psi})}{1 - \rho e_{y}}$$
$$\dot{e}_{y} = v \sin(e_{\psi})$$
$$\dot{e}_{\psi} = v \left(\frac{\tan(\delta)}{a + b} - \rho \frac{\cos(e_{\psi})}{1 - \rho e_{y}}\right)$$
$$\dot{v} = a$$
$$\dot{a} = \frac{a_{cmd} - a}{\tau}$$
$$\dot{\delta} = \delta_{cmd}$$



π_C : Motion Planning

Mapping from discrete behaviours controls

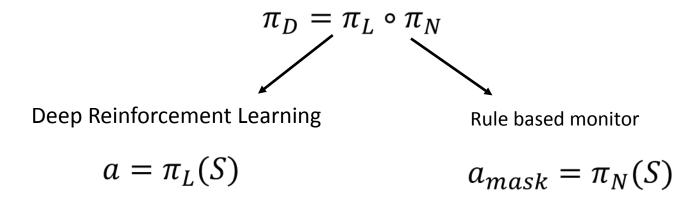
Nonlinear Model Predictive Controller (NMPC)

$$\begin{split} \dot{\sigma} &= \frac{v \cos(e_{\psi})}{1 - \rho e_{y}} & \min_{\xi, U} \sum_{k=0}^{H_{p}-1} \left[\left(\xi_{k+1} - \xi_{ref} \right)^{T} Q(\xi_{k+1} - \xi_{ref}) + u_{k}^{T} R u_{k} \right] \\ \dot{e}_{y} &= v \sin(e_{\psi}) & \xi_{k+1} = f(\xi_{k}, u_{k}) \\ \dot{e}_{\psi} &= v \left(\frac{\tan(\delta)}{a + b} - \rho \frac{\cos(e_{\psi})}{1 - \rho e_{y}} \right) & e_{y_{min}} \leq e_{y_{k}} \leq e_{y_{max}} \\ \dot{v} &= a & v_{k} \leq v_{max} \\ \dot{a} &= \frac{a_{cmd} - a}{\tau} & a_{min} \leq a_{k} \leq a_{max} \\ \dot{\delta} &= \delta_{cmd} & a_{cmd_{min}} \leq \delta_{cmd_{k}} \leq \delta_{cmd_{max}} \\ \end{split}$$

π_D : Behaviour Planning

Mapping from state to discrete behaviours

- Need to separate effectiveness from safety
 - Effectiveness and comfort can be learned from data
 - Safety cannot be learned



Learning effectiveness and comfort

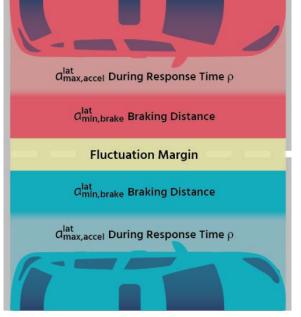
Ensuring safety via formal validation

π_N : Responsibility Sensitive Safety

Formal model ensures safety under "reasonable assumptions"

$$\begin{split} d_{long}{}_{min} &= \left[v_r \rho + \frac{1}{2} a_{max,accel}^{long} \rho^2 + \frac{\left(v_r + \rho a_{max,accel}^{long} \right)^2}{2a_{min,brake}^{long}} - \frac{v_f^2}{2a_{max,brake}^{long}} \right]_+ \\ d_{lat}{}_{min} &= \mu + \left[\frac{v_1 + v_{1,\rho}}{2} \rho + \frac{v_{1,\rho}^2}{2a_{min,brake}^{lat}} - \left(\frac{v_2 + v_{2,\rho}}{2} \rho - \frac{v_{2,\rho}^2}{2a_{min,brake}^{lat}} \right) \right]_+ \end{split}$$

 $v_{1,\rho} = v_1 + \rho a_{max,accel}^{lat}$ $v_{2,\rho} = v_2 - \rho \alpha_{max,accel}^{lat}$



Parameters ρ , μ , $\alpha_{max,accel}^{long}$, $a_{min,brake}^{long}$, $a_{max,brake}^{long}$, $a_{max,accel}^{lat}$ and $a_{min,brake}^{lat}$ can be tuned to change the cautiousness

[1] Shalev-Shwartz, S., Shammah, S., & Shashua, A. (2017). On a formal model of safe and scalable self-driving cars.

Nicola Albarella

π_L : Behaviour Planning

Deep Reinforcement Learning (DRL)

$$s_{k} = \begin{bmatrix} X^{0} & Y^{0} & v_{X}^{0} & v_{Y}^{0} & \psi^{0} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ X^{N} - X^{0} & Y^{N} - Y^{0} & v_{X}^{N} & v_{Y}^{N} & \psi^{N} \end{bmatrix}$$

$$r_k = k_1 v$$

- Deep-Q Learning (DQN)
- Proximal Policy Optimization (PPO)

Behaviours *a*

Change lane to the left

Change half lane to the left

Keep same lane, same speed

Change half lane to the right

Change lane to the right

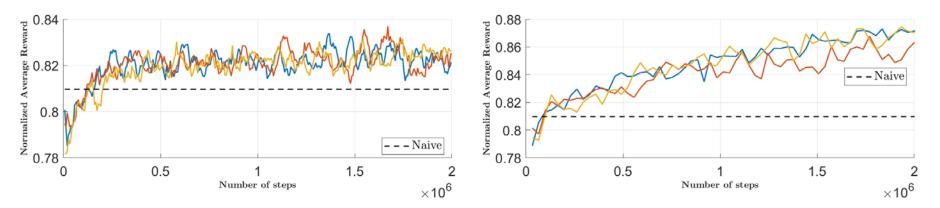
Slower

Faster

Highway driving results

DQN

PPO



Algorithm	Average Reward	Average Length
DQN + mask	0.835 ± 0.037	40.0 ± 0.0
PPO + mask	0.881 ± 0.050	40.0 ± 0.0
DQN	0.826 ± 0.226	33.6 ± 10.2
РРО	0.647 ± 0.254	31.1 ± 12.5
Naive	0.809 ± 0.003	40.0 ± 0.0

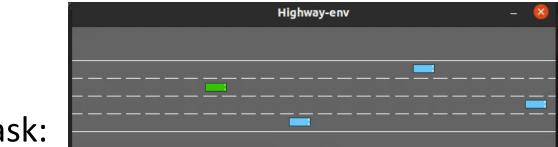
Highway driving results

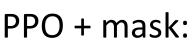
OpenAI Gym based Highway Environment

4 lanes highway

Scenarios are randomly generated

Other road users are modelled through IDM and MOBIL





PPO:

Thanks for the attention!

