

PhD Student Nicola Albarella

Control architectures for Advanced Driver-Assistance Systems in automotive

Tutor: Prof. Stefania Santini

Cycle: XXXV Year: FIRST

My background

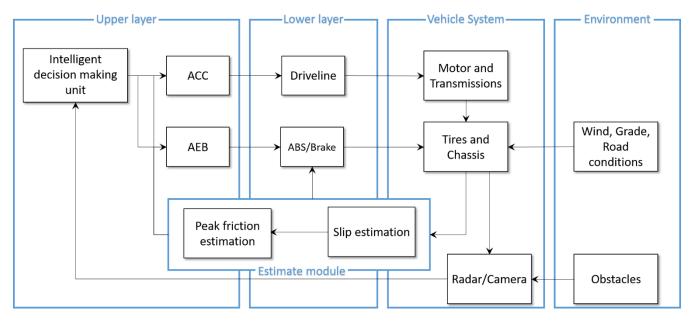
- MSc degree: Automation Engineering
- Research group/laboratory: Daisy Lab (Prof. Stefania Santini)
- Scholarship type: Funded by Kineton s.r.l.
- Cooperation: Kineton r&d

Research field of interest

- Driving assisted vehicles and fully automated vehicles
 - Proven drivers and road users protection enhancement
 - Traffic congestion and pollution reduction

FULLY

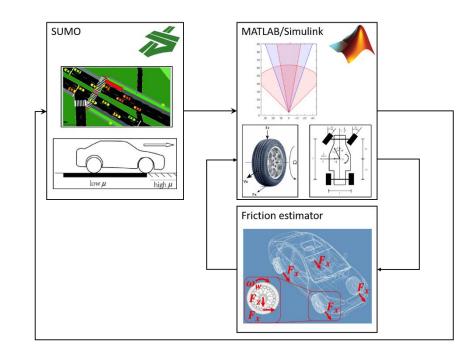
First year activity


- State of the art: ADAS (Advanced Driving Assistance Systems) and automated driving functions are designed under the main assumption of flat and dry road surfaces
- The roads are not always perfectly dry
- Open challenge: How can we make autonomous driving control strategies robust enough to deal with challenging environmental scenarios (e.g. icy roads)?

First year activity

- **Contribution**: Design grip-aware control strategy able to adapt the autonomous driving logic on the base of on-board estimation of the road conditions in real time (ACC-Adaptive Cruise Control, AEB-Autonomous Emergency Braking, ABS-Anti-Locking Braking System)
- **Methodology**: Model Predictive Control and non-linear control strategies for vehicle dynamics; numerical validation via a purposely designed highly detailed co-simulation platform.
- Results: Increased safety performances assessed via automotive KPIs

Nicola Albarella

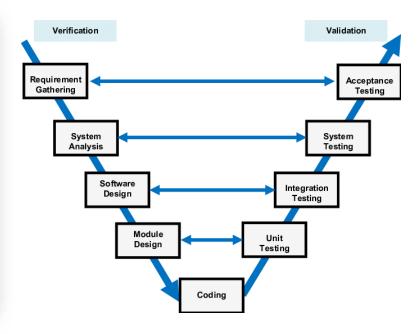

5

Next year activity

- State of the art: ADAS are limited to premium cars
- Open challenge: make ADAS safe and affordable for other market shares

Objectives:

- Replace RADAR/LIDAR with a forward facing camera/s
- Enhance the co-simulation platform in order to asses the effectiveness or the possible risk originated by ADAS in realistic mixed traffic scenarios



Next year activity

Expected contribution:

- Design innovative collision avoidance control strategies for semiautonomous and fully autonomous cars, through Model Based Design
- Hardware-in-the-loop and vehicle-in-the-loop validation of the proposed control architectures

Summary of study activities

- Ph.D. School: Scuola Nazionale Dottorandi Ferdinando Gasparini
- Ad hoc Courses: Safety Critical Systems for Railway Traffic Management, Machine learning, Innovation management, entrepreneurship and intellectual property
- M.Sc. Courses: Formal Methods, Embedded Systems, Big Data Analytics
- <u>Seminars</u>: Al and ethics, Large scale training of Deep Neural Networks, Deep learning onramp, Lo spazio cibernetico come dominio bellico, Computational biology, How to get published with the IEEE?, La programmazione europea e la ricerca, SAS Analytics, Planning 5G under EMF constraints, Exploring Autonomy in robotic Flexible Endoscopy
- Others: AVL training

Products

[P1]

[Submitted] N. Albarella, S. Santini, V. M. Arricale, R. Brancati, A. Sakhnevtch, On-board road friction estimation technique for autonomous driving vehicle following manoeuvres, Mechanical Systems and Signal Processing (2020)

Credits earned

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	1.6	0.8	7.6	0	10
Bimonth 2	3.3	0	6.7	0	10
Bimonth 3	0	0.8	9.2	0	10
Bimonth 4	14	2	0	0	16
Bimonth 5	11.4	0	2.6	0	14
Bimonth 6	6	0	0	0	0
Total	36.3	3.6	26.1	0	66

