





### Francesco De Lellis Reinforcement Learning for Control

#### Tutor: prof. Mario di Bernardo co-Tutor: prof. Giovanni Russo (University of Salerno)

Cycle: XXXV

Year: 2023



# **Background information**

- MSc degree in Control Engineering on 03/10/2019
- Member of the research group on "Sincronizzazione e Controllo di Reti e Processi" (SINCRO)
- PhD student period: 01/11/2019 31/01/2023
- Scholarship: University of Naples Federico II ITEE grant
- Ongoing collaborations:
  - Prof. Giovanni Russo from University of Salerno
  - Prof. Mirco Musolesi from University College London
- Visitor at the University College London (UCL) for the following periods: 26/05/22- 17/06/22 and 27/06/22-04/09/2022



### Summary of study activities [1]

- I attended courses, seminars and conferences to keep developing my knowledge of RL and control approaches
- Conferences / events attended:
  - Learning for Dynamics and Control (L4DC), Stanford University
  - UK Mobile, Wearable and Ubiquitous Systems Research Symposium (MOBI UK), University College London
  - Controlling Complexity: From Nonlinear Systems To Complex Networks And Beyond, "Museo Diocesano" of Ischia



### Summary of study activities [2]

- Courses :
  - Introduction to Reinforcement Learning and Data-Driven Control for Complex Systems
  - Corso di formazione specifica alla salute e sicurezza sui luoghi di lavoro
- Key seminars:
  - UCL Neuro AI Talk Series
  - UCL Dark Seminar Series
  - Causal foundations for safe AGI by Tom Everitt (Deep Mind)
  - Multi-Agent Reinforcement Learning toward Zero-Shot by Kalesha Bullard (DeepMind)
  - SINCRO research group seminar series



#### Research areas [1]

- Control Theory:
  - <u>Given a mathematical description</u> of a dynamical systems
  - Control tries to modify the behaviour of such system so that it evolves in a desired way
  - This process passes through the definition of a control law

- Reinforcement Learning:
  - It provides a set of algorithms to learn (sub-) optimal solutions
  - It can be used as a controller without requiring a mathematical model of the system dynamics
  - <u>These algorithms tend to be data inefficient and require</u> long trainig sessions







#### Research areas [2]

 My area of research lies in between Reinforcement Learning and Control



- In which I formulated reinforcement learning and control in a unified framework ...
- ... and merged Reinforcement Learning with control approaches in closed loop by:
  - Assisting the learning process with control laws
  - Use control theoretic arguments to provide stability certificate to RL algorithms



# Research results [1]

- An optimal control formalism as been adopted to define both Reinforcement Learning and Control problems
- Derivation of tutoring mechanism for reinforcement learning agents





# Research results [2]

 Implementation and testing of such algorithms for the case of Q-learning



 Theoretical analysis of final control performance of Qlearning agents



# Research products (3<sup>rd</sup> year)

| [P1] | <b>F. De Lellis</b> , M. Coraggio, G. Russo, M. Musolesi, "CT-DQN: Control-<br>Tutored Deep Reinforcement Learning", submitted to Learning for Dynamics<br>and Control Conference, arXiv:2212.01343 ,2022.                                                                                                                |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [P2] | <b>F. De Lellis</b> , M. Coraggio, G. Russo, M. Musolesi, & M. di Bernardo,<br>"Control-Tutored Reinforcement Learning: Towards the Integration of Data-<br>Driven and Model-Based Control". In Learning for Dynamics and Control<br>Conference, pp. 1048-1059, Proceedings of Machine Learning Research<br>(PLMR), 2022. |
| [P3] | S. M. Brancato, <b>F. De Lellis</b> , D. Salzano, G. Russo, M. di Bernardo,<br>" <i>External control of genetic toggle switch via Reinforcement Learning</i> ",<br>submitted to IEEE European Control Conference, arXiv:2204.04972 ,2022                                                                                  |



### PhD thesis overview

- Problem statement
  - Can Reinforcement Learning benefit from Control Theory? If so, how?
- Objective
  - Use optimal control to unify Reinforcement Learning and Control Theory
  - Use a control tutor to make RL agents learn faster
  - Provide stability certificate to final learned solution using Control Theory



### PhD thesis overview

Methodology
Problem statement

 $\max_{\pi} \mathbb{E}[J^{\pi}], \\ \text{s.t. } X_{k+1} = f(X_k, U_k, W_k), \quad k \in \{0, \dots, N-1\}, \\ U_k = \pi(X_k), \quad k \in \{0, \dots, N-1\}, \\ x_0 \text{ given},$ 

- Definition of evaluation metrics
- Perform of numerical campaigns on a set of benchmark problems







# PhD thesis

- I will be showing how the use of control laws can be beneficial in the Reinforcement Learning loop
- The control tutored algorithms proposed are analyzed and tested in depth to clearly show the ups and downs of such approach
- People from both communities can benefit from these result to deliver better learning agents to solve hard control problems



## **Research products**

|      | F. De Lellis, M. Coraggio, G. Russo, M. Musolesi, "CT-DQN: Control-Tutored    |
|------|-------------------------------------------------------------------------------|
| [P1] | Deep Reinforcement Learning", submitted to Learning for Dynamics and          |
|      | 2022, Control Conference, arXiv:2212.01343                                    |
| [P2] | F. De Lellis, M. Coraggio, G. Russo, M. Musolesi, & M. di Bernardo, "Control- |
|      | Tutored Reinforcement Learning: Towards the Integration of Data-Driven and    |
|      | Model-Based Control". In Learning for Dynamics and Control Conference, pp.    |
|      | 1048-1059, Proceedings of Machine Learning Research (PLMR), 2022.             |
|      |                                                                               |
| [P3] | F. De Lellis, G. Russo, and M. di Bernardo. "Tutoring Reinforcement           |
|      | Learning via Feedback Control", proc. of IEEE European Control Conference     |
|      | (ECC), 2021.                                                                  |
| [P4] | F. De Lellis, F. Auletta, G. Russo, P. De Lellis and M. di Bernardo. "An      |
|      | Application of Control-Tutored Reinforcement Learning to the Herding          |
|      | Problem", proc. of IEEE International Workshop on Cellular Nanoscale          |
|      | Networks and their Applications (CNNA), 2021.                                 |
| [P5] | F. De Lellis, F. Auletta, G. Russo, P. De Lellis, M. di Bernardo, "Control-   |
|      | Tutored Reinforcement Learning", arXiv:2012.06863, 2019.                      |

