
Cristina lacono

Automation of robot-assisted surgical procedures

Tutor: Fanny Ficuciello

Cycle: XXXV Year: 3rd

Research field of interest

Automation of robot-assisted surgical procedures

Cristina Iacono

Summary of study activities

PhD courses:

- Matlab fundamentals
- Innovation management, entrepreneurship and intellectual property
 Statistical data analysis for science and engineering research
- Mathematics and Statistics for Life Sciences
- Strategic Orientation for STEM Research and Writing

MSc courses:

- Robot Interaction Control
- Visione per Sistemi Robotici
- Robotics Lab

PhD Schools: SIDRA 2021:

- Game Theory and Network Systems
- Soft Robots

ee_{PhD}

Cristina Iacono

Summary of study activities

Attended:

International Conference on Robotics and Automation (ICRA) 2020
Conference on New Technologies for Computer/Robot Assisted Surgery (CRAS) 2020
Italian Institute of Robotics and Intelligent Machines (I-RIM) 3D 2020
Italian Institute of Robotics and Intelligent Machines (I-RIM) 3D 2021
International Conference on Robotics and Automation (ICRA) 2022

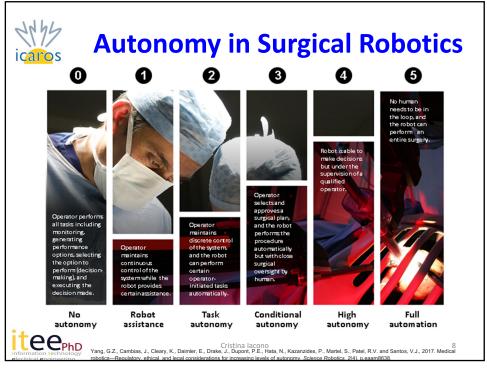
Organized:

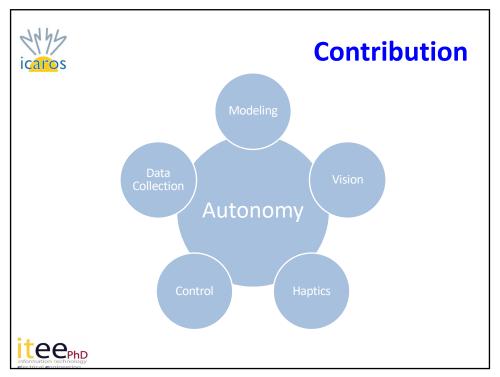
Conference on New Technologies for Computer Robot Assisted Surgery (CRAS) 2022

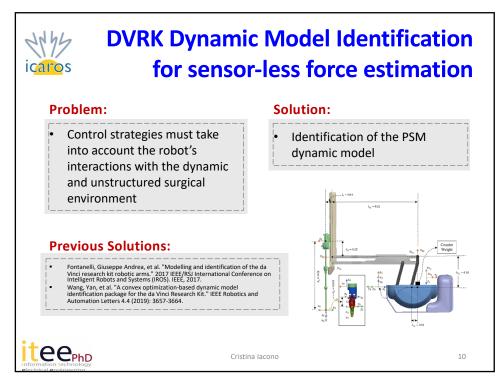
Cristina Iacono

Surgical Robotics

Limitations:


- Still strongly depends on surgeon's abilities
- Limited vision on the surgical site
- Kinematically complex and repetitive tasks
- Lack of haptic feedback


Objective:


Automation of surgical tasks in order to reduce surgeon errors, duration of procedures, trauma, and expense

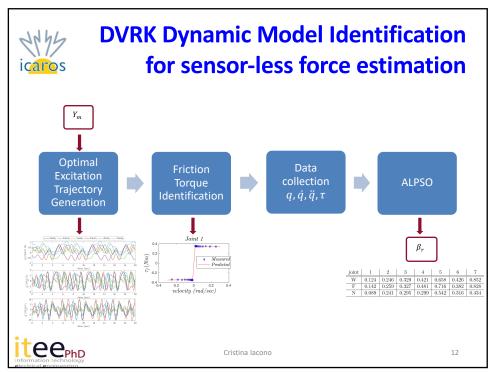
Cristina Iacono

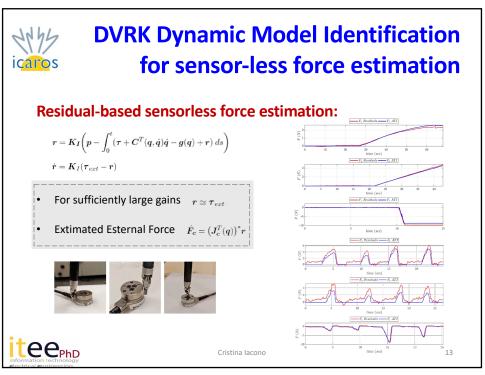
DVRK Dynamic Model Identification for sensor-less force estimation

Method

- Friction estimation
 - Stribeck effect
 - Superposition method
- Augmented Lagrangian Particle Swarm Algorithm (ALPSO)
- $\boldsymbol{\tau}_f = \frac{2}{\pi}\arctan(c\dot{\boldsymbol{q}})\Big(\Big(\boldsymbol{F}_c + (\boldsymbol{F}_s \boldsymbol{F}_c)e^{-|\dot{\boldsymbol{q}}|/\dot{\boldsymbol{q}}_s}\Big) + \boldsymbol{F}_v\dot{\boldsymbol{q}}\Big)$
- $au_i(q_f^+) = G(q_f^+) + au_f(\dot{q}_f^+) au_f(\dot{q}_f^-) = T_i(q_f^+) au_i(q_f^-) = T_i(q_f^-) + T_f(\dot{q}_f^-) T_f(\dot{q}_f^-) = T_f(\dot{q}_f^-) T_f(\dot$

Constrained Optimization Problem


$$\begin{aligned} & \underset{\boldsymbol{\beta}_r}{\operatorname{argmin}} & & \|\boldsymbol{\tau}_m - \boldsymbol{Y}_m \boldsymbol{\beta}_r\|^2 & \boldsymbol{\beta}_r \in \mathcal{D} \subseteq \mathbb{R}^r \\ & \text{subject to} & & \begin{cases} \boldsymbol{g}(\boldsymbol{\beta}_r) = 0, & \boldsymbol{g} : \mathbb{R}^r \to \mathbb{R}^{m_e}, \\ \boldsymbol{h}(\boldsymbol{\beta}_r) \leq 0, & \boldsymbol{h} : \mathbb{R}^r \to \mathbb{R}^{m_i} \end{cases}$$



Cristina Iacono

10

5

Products

O. F. Argin, R. Moccia, **C. Iacono**, F. Ficuciello, "da Vinci Research Kit Patient Side Manipulator Dynamic Model using Augmented Lagrangian Particle Swarm Optimization", **submitted** to IEEE Transaction on Medical Robotics and Bionics

Cristina Iacono

Control framework for human robot interaction in medical robotics applications

Problem:

- Several medical robotics applications require an RCM constraint
- Reduced workspace to avoid touching dangerous areas

itee_{PhD}

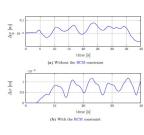
14

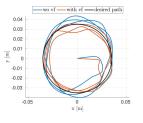
Cristina Iacono

15

Control framework for human-robot interaction in medical applications

RCM constraint


$$egin{aligned} m{p}_{RCM} &= m{p}_i + \lambda (m{p}_{i+1} - m{p}_i) & 0 \leq \lambda \leq 1 \ \dot{m{p}}_{RCM} &= m{J}_{RCM}(m{q}, \lambda) egin{bmatrix} \dot{m{q}} \ \dot{m{\lambda}} \end{bmatrix} \end{aligned}$$


Manual guidance and Virtual Fixtures:

$$egin{aligned} egin{aligned} m{M}\ddot{p} + m{D}\dot{p} + m{K}m{p} &= m{f} - m{f}_{VF} \ m{f}_{VF} &= m{K}_{VF}m{d} + m{D}_{VF}\dot{m{d}} \end{aligned}$$

Cristina Iacono

Products

17

C. Pecorella, **C. Iacono**, B. Siciliano, F. Ficuciello, "*Human-Robot Interactive Framework with Remote Center of Motion and Virtual Fixtures Contraint*", **in submission to** 19th International Symposium on Advances in Robot Kinematics

itee_{PhD}

Cristina Iacono

Vision-Based Dynamic Virtual Fixtures for Tools Collision Avoidance in Robotic Surgery

Problem Statement:

• Surgical tools can collide and create serious damage to human tissues

Proposed Solution:

Surgical tools collision avoidance method:

- Forbidden Region Virtual Fixtures (FRVF)
- A marker-less tool tracking method using deep neural network
- Extended Kalman Filter (EKF) for tool pose estimation ensures robust application of VF

iteePhD

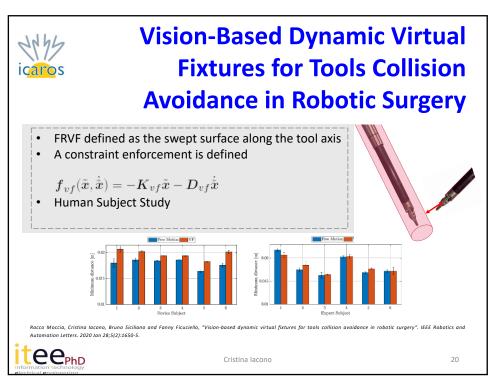
Cristina Iacono

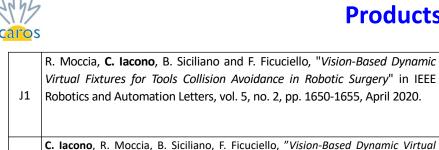
18

Vision-Based Dynamic Virtual Fixtures for Tools Collision Avoidance in Robotic Surgery

Solution:

- Tool Segmentation and 3D Reconstruction
- · Extended Kalman Filter for pose tracking
- · Kinematics and Vision data fusion





19

Cristina Iacono

19

C. Iacono, R. Moccia, B. Siciliano, F. Ficuciello, "Vision-Based Dynamic Virtual Fixtures for Tools Collision Avoidance in MIRS", 10th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, Barcelona, Spain, September 28-30, 2020.

C. lacono, R. Moccia, B. Siciliano, F. Ficuciello, "Forbidden Region Virtual Fixtures for Surgical Tools Collision Avoidance", Proc. Institute for Robotics and Intelligent Machine Conference, Rome, Italy, October 18-20, 2020.

ee_{PhD}

21

Cristina Iacono

21

Products

Localization of the biliary tract in laparoscopic images

Laparoscopic Cholecystectomy:

Advantages: faster recovery and better cosmetic results **Disadvantages**: higher risk of bile duct injury

Indocyanine green (ICG):

Advantage: Enhanced intraoperative visualization of the bile duct

Disadvantage: Challenging to see all the other anatomical structures

Objective:

Help the surgeon to better visualize the biliary tract without the use of ICG

Cristina Iacono

22

Localization of the biliary tract in laparoscopic images

Proposed Solution:

- You Only Look Once (YOLO) on laparoscopic images to localize the biliary duct.
- Construction and annotation of an image database to train the deep learning algorithm
- Average IoU of 67%

	Total Frames	Training	Test
Patient 1	142	15	15
Patient 2	171	34	14
Patient 3	219	-	39
Patient 4	152	74	20
Patient 5	48	5	5
Patient 6	144	-	29
Patient 7	168	14	10
Patient 8	89	18	10
Patient 9	153	14	10
Patient 10	73	20	10
Patient 11	27	14	10
Patient 12	135	-	19

(b) Patient 4.

(d) Patient 12.

information technology

23

Cristina Iacono

23

Products

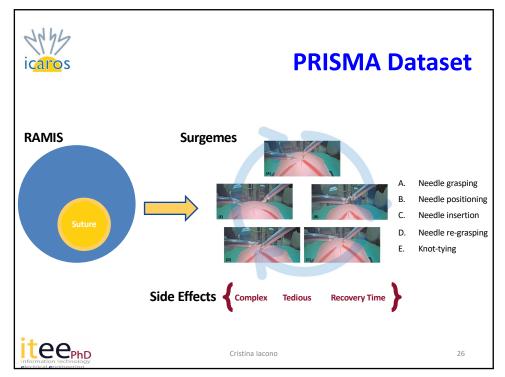
C. Iacono, S. Moccia, A. Marzullo, E. De Momi, U. Bracale, F. Ficuciello "Deep learning-based localization of the biliary tract in laparoscopic images acquired during surgical robotic procedures", Italian Institute of Robotics and Intelligent Machines (I-RIM) 3D 2021, October 8-9, 2021.

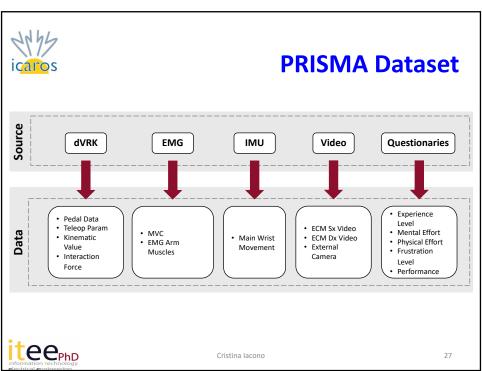
C. Iacono, S. Moccia, A. Marzullo, E. De Momi, F. Ficuciello, U. Bracale, "Deep learning-based localization of the biliary tract on white-light images acquired during laparoscopic cholecystectomy", 11th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, Naples, Italy, April 25-27, 2022.

Cristina Iacono

Worcester Polytechnic Institute

Work:


ee_{PhD}


- Recreation of the dVRK WPI setup in ICAROS:
 - Monitor
 - SUJ calibration
- Designed User Study to collect a suturing dataset:
 - Training
 - Compliance
 - Experiment
 - Survey
- Worked on the 2021/2022 AccelNet Surgical Robotics Challenge:
 - Grasp needle and drive through tissue
 - Learning from demonstration

Cristina Iacono

25

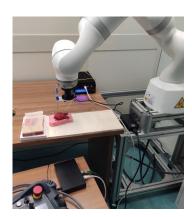
Prisma Dataset:

- Goal: Collect data to automatize the Suture Task
- Data: 33 Kinematic variables, Video from ECM and External Camera, EMG and IMU from the Surgeon and Surgeon's mental and physical fatigue recorded by questionaries
- Task: Discontinued Suture
- **Gestures:** 5 Suture Step Classification

Prisma Dataset

JIGSAWS:

- **Goal:** Collect Data to train novice surgeon
- **Data:** 19 Kinematic variables and Video from ECM
- Task: Continue Suture
- Gestures: 10 Suture Step Classification

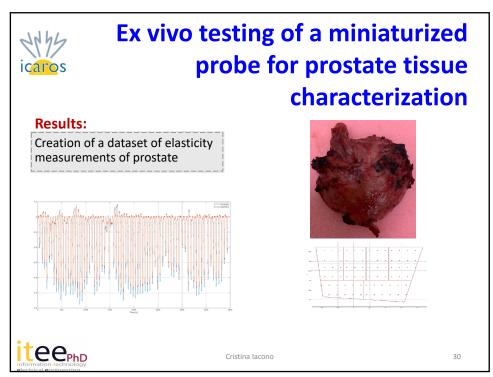

Ex vivo testing of a miniaturized probe for prostate tissue characterization

Problem:

Characterization of mechanical properties of insane and healthy prostate tissues

Objective:

Testing on phantom tissues and ex-vivo tissues a miniaturized probe based on optical fiber

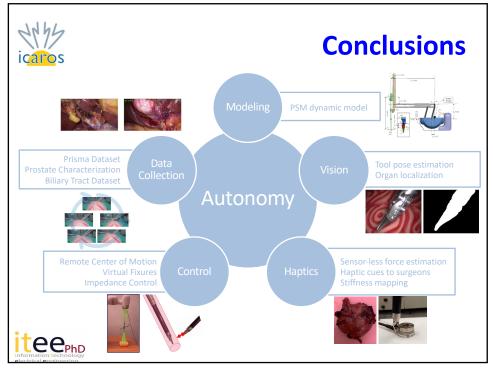


29

Cristina Iacono

29

Other Products


M. Caianiello, C. Iacono, A. Imperato, F. Ficuciello, "Deep Deterministic Policy Gradient from Success: A New Approach for Robot-Assisted Suturing", Proc. Institute for Robotics and Intelligent Machine Conference, Rome, Italy, October 20-22, 2023.

M. Caianiello, **C. Iacono**, A. Imperato, F. Ficuciello, "Exploring the Use of Deep Reinforcement Learning Algorithms for Wound-Approaching Trajectories in Robot-Assisted Minimally Invasive Surgery", 2023 21th International Conference on Advanced Robotics (ICAR), Abu Dhabi, United Arab Emirates, December 2023

31

Cristina Iacono 31

