

Angela Marino

Target detection and localization via active/passive radars

Tutor: Augusto Aubry Cycle: XXXV co-Tutor: Paolo Braca Year: 2019-2020

My background

- Master Science degree: Telecommunication Engineering at the University of Naples, "Federico II"
- **Research group/laboratory:** Radar Signal Processing and Electronic Defense Research Group (RSPRG)
- **PhD start date:** 01/11/2019
- Scholarship type: funded by NATO Science and Technology Organization - Centre for Maritime Research and Experimentation

Research field of interest

Radar Signal Processing

- FDA-MIMO radar
- Passive Bistatic Radar
- Adaptive Target Detection
- Target Localization

Summary of study activities

Study activities

- Advanced Radar Techniques
- Detection and Localization Theory
- Optimization Theory
- Statistical signal processing
- Radar Tracking Algorithms

Ad hoc PhD courses / schools

- Intelligenza Artificiale ed Etica: La ricercar in IA alla prova delle sfide etiche
- Deep Learning for Computer Vision: Classification, Segmentation, and Recognition
- Scientific Programming and Visualization with Python
- Matlab Fundamentals
- Innovation management, entrepreneurship and intellectual property
- Machine Learning
- Strategic Orientation for STEM Research & Writing

Courses attended borrowed from MSc curricula:

• Tecniche Di Elaborazione Dei Segnali Per la Bioingegneria

Conferences / events attended

• 2020 IEEE Radar Conference (Florence, Italy), Sept. 2020 (1 paper presented)

Summary of study activities

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	1.9	0	3	0	4.9
Bimonth 2	0	0.2	6	0	6.2
Bimonth 3	4	1	7	0	12
Bimonth 4	5	4.6	6	0	15.6
Bimonth 5	4	0.2	6	0	10.2
Bimonth 6	12,6	2.4	6	0	21
Total	27.5	8.4	34	0	69.9
Expected	20 - 40	5 - 10	10 - 35	0 - 1.6	

Research activity: Overview

- Problem
 - Target localization through the joint use of co-located PBR and active radar.
- Objective
 - Development of advanced target position estimate algorithm, jointly accounting for PBR and active radar information.
 - Overcoming the intrinsic fixed-acquisition-rate limitations of the active rotating platform (provisioning of gap filler capabilities to the surveillance system).
- Intended contribution
 - Formalization of ad-hoc constraints for the localization process accounting for PBR receive antenna mainbeam size and active radar data.
 - Definition of the position estimation problem resorting to the constrained Least Squares estimation paradigm.
 - Design of an efficient optimization algorithm (via KKT condition exploitation) to globally solve the formulated non-convex optimization problem and determine the location estimate in closedform.
 - Improvement of the position estimate quality with respect to some localization algorithms counterparts, for both static and dynamic scenario.

Research activity: Overview

- Problem
 - Design of novel adaptive detection architectures exploiting the GLRT criterion.
- Objective
 - Development of advanced receivers to reliably detects targets in FDA-MIMO radars.
 - Estimate the range of detected targets.
- Intended contribution
 - Development of an algorithm to determine the ML estimates of all unknown parameters (under both the hypothesis) as well as the devising of some low complexity sub-optimal counterparts.
 - Near to benchmarks detection performance.

Products

	L Lon A Marina A Aubry A Do Maio G Liao and L Xu "Design of adaptive
[C1]	L. Lan, A. Marino, A. Aubry, A. De Maio, G. Liao, and J. Xu, "Design of adaptive
	detectors for FDA-MIMO radar", IEEE 11th Sensor Array and Multichannel
	Signal Processing Workshop, SAM 2020, Published, 2020.
[C2]	L. Lan, A. Marino, A. Aubry, A. De Maio, G. Liao, and J. Xu, "Design of adaptive
	detectors for FDA-MIMO radar", IEEE 11th Sensor Array and Multichannel Signal
	Processing Workshop, SAM 2020, Published, 2020.
	L. Lan, A. Marino, A. Aubry, A. De Maio, G. Liao, and J. Xu, "GLRT-Based Adaptive Target
[J1]	Detection in FDA-MIMO Radar", IEEE Transactions on Aerospace & Electronic Systems,
	IEEE TAES. Accepted, 2020.
[C3]	A. Marino, A. Aubry, A. De Maio, and P. Braca, "2D Constrained PBR Localization Via
	Active Radar Designation" ,2020 IEEE Radar Conference (Florence, Italy), Sept. 2020,
	RadarConf20. Published, 2020.
	A. Aubry, P. Braca, A. De Maio, and A. Marino, "2D PBR Complying with Constraints
[J2]	Forced by Active Radar Measurements", IEEE Transactions on Aerospace & Electronic
	Systems, IEEE TAES. Under revision (RQ),2020.

Thank you for your kind attention.

