

Angela Marino 3D Target Localization via Multiple Deployable Nodes

Tutor: Prof. Augusto Aubry Braca Cycle: XXXV

co-Tutor: Dr. Paolo Year: 2020-2021

My background

- Master Science degree: Telecommunication Engineering at the University of Naples, "Federico II"
- Research group/laboratory: Radar Signal Processing and Electronic Defense Research Group (RSPRG)
- **PhD start date:** 01/11/2019
- Scholarship type: funded by NATO Science and Technology Organization - Centre for Maritime Research and Experimentation

Research field of interest

Optimization Theory Applied to Radar Signal Processing

- Passive Bistatic Radar
 - Target localization via passive and active radars
- Frequency Diverse Array-MIMO Radar
 - Adaptive target detection
- Multiplatform Radar Systems
 - 3D Target localization via Deployable Radar Nodes

Summary of study activities

Study activities

• Statistical filtering techniques

Ad hoc PhD courses / schools

- Cooperative and Non Cooperative Localization Systems
- Matrix Analysis for Signal Processing with MATLAB

Courses attended borrowed from MSc curricula:

- Radiolocalizzazione Terrestre e Satellitare
- Teoria dell'Informazione

Conferences / events attended

- Student Contest of the 1st International Virtual School on Radar Signal Processing University of Electronic Science and Technology of China (UESTC), 22-23 December 2020. 1 paper presented. Ranked Third to the Student Contest.
- Signal Processing Symposium (SPSympo) 2021, 21-23 September 2020, Lodz, Poland. 1 paper presented. Received the Young Scientist Contest Award (First Prize).

Summary of study activities

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	0	2.7	6	0	8.7
Bimonth 2	9	0.2	7	0	16.2
Bimonth 3	3	2.5	9	0	14.5
Bimonth 4	2	1.6	7	0	10.6
Bimonth 5	0	0	6	0	6
Bimonth 6	6	0	7	0	13
Total	20	7	42	0	69
Expected	10 - 20	5 - 10	30 - 45	0 - 1.6	

Research activity: Overview

Problem

Multiplatform radar networks are of great interest in order to:

- enlarge the surveillance area
- improve data reliability and accuracy
- enhance the fault tolerance
- improve the data utilization of the system
- endow resistance to electronic countermeasures
- reduce the effects of shadowing.
- Objective

 Development of an advanced 3D target position estimate algorithm for multiplatform radar systems, accounting restrictions embedded into the characteristics of the active radiation pattern.

Research activity: Overview

Methodology

 Formalization of ad-hoc constraints for the localization process accounting for characteristics of the acctive radiation pattern.
Definition of the position estimation problem resorting to the constrained Least Squares estimation paradigm.

 Design of an efficient optimization algorithm exploiting KKT conditions for solving the formulated non-convex optimization problem and determine the location estimate in quasi-closed-form among at most twenty-six candidates.

- Development of a smart rooting method to solve the sixthand fourth-order equations involved in the evaluation of the candidate optimal solutions.
- Improvements in the position estimate accuracy in comparison with some counterparts, especially for weak target returns.

Products

[J1]	A. Aubry, P. Braca, A. De Maio, and A. Marino, "2D PBR Complying with Constraints
	Forced by Active Radar Measurements", IEEE Transactions on Aerospace & Electronic
	Systems, in Press, 2021.
[J2]	A. Aubry, P. Braca, A. De Maio, A. Marino, "Enhanced Target Localization with
	Deployable Multiplatform Radar Nodes Based on Non-Convex Constrained Least
	Squares Optimization", IEEE Transactions on Signal Processing, Under revision (RQ),
	2021.
[C1]	A. Marino, A. Aubry, A. De Maio, and P. Braca, "2D PBR Localization Complying with
	Constraints Forced by Active Radar Measurements", IVSRSP: The 1 st International
	Virtual School on Radar Signal Processing University of Electronic Science and
	Technology of China (UESTC) , China, 22-23 Dec. 2020.
	A. Marino, A. Aubry, A. De Maio, and P. Braca, "3D Localization for Multiplatform Radar
[C2]	Networks with Deployable Nodes", Signal Processing Symposium, Lodz, Poland, 21-23
	Sept. 2021.
[C3]	A. Marino, A. Aubry, A. De Maio, P. Braca, and D. Gaglione, "Constrained Target
	Localization for Multiplatform Radar Systems", Military Communications Conference
	MILCOM 2021, 29 Nov.–2 Dec. 2021.

