

PhD student Viviana Morlando

Disturbance rejection in optimal control for limbed parallel robots

Tutor:Prof. Fabio RuggieroCycle:XXXVYear: Third

Background information

- M.Sc. in Automation Engineering Università degli Studi di Napoli Federico II
- Group: PRISMA Lab
- PhD start date: 1/11/2019
- PhD end date: 31/01/2023
- Scholarship type: DIETI PRIN 2017 "PRINBOT"
- Periods in a company: 15/11/2021-31/01/2022 Dynamic Legged System, IIT
- Periods abroad: 01/04/2022-30/09/2022 Robotics System Lab, ETH Zurich

Summary of study activities

Ad hoc PhD courses / schools:

- Machine Learning
- Scientific Programming and Visualization with Python
- EECI- International Graduate School on Control 2020- M10 Model Predictive Control, Remote
- SIDRA 2021 PhD Summer School, Bertinoro University Residential Centre

Courses attended borrowed from MSc curricula

- Field and service robotics
- Robotics Lab

Conferences attended

- 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, Pennsylvania, 23/05/2022-27/05/2022
- Conferenza I-RIM 3D 2022, 4 Conferenza Italiana di Robotica e Macchine Intelligenti Roma, Italia, 7/10/2022-9/10/2022

Research area

- Objective: robust control of autonomous systems in unstructured environments
- Importance of limbed parallel robots: can move in challenging terrains and overcome obstacles
- Open challenges for limbed parallel robots: intrinsecally unstable and easily subject to external disturbances

Research products

[P1]	Viviana Morlando, Ainoor Teimoorzadeh, Fabio Ruggiero
	"Whole-body control with disturbance rejection through a momentum-based
	observer for quadruped robots",
	Mechanism and Machine Theory, vol. 164 , pp. 104412, 2021,
	DOI: https://doi.org/10.1016/j.mechmachtheory.2021.104412
[P2]	Viviana Morlando, Mario Selvaggio, Fabio Ruggiero
	"Nonprehensile Object Transportation with a Legged Manipulator",
	2022 International Conference on Robotics and Automation (ICRA),
	Philadelphia, Pennsylvania, May 2022, pp. 6628-6634, IEEE,
	DOI: 10.1109/ICRA46639.2022.9811810
[P3]	Viviana Morlando, Fabio Ruggiero
	"Disturbance rejection for legged robots through a hybrid observer",
	2022 30th Mediterranean Conference on Control and Automation (MED)
	Athens, Greece, June 2022, pp. 743-748, IEEE,
	DOI: 10.1109/MED54222.2022.9837169
[P4]	Viviana Morlando, Mario Selvaggio, Fabio Ruggiero
	"Robotic Non-prehensile Object Transportation",
	Conferenza I-RIM 3D 2022, 4 Conferenza Italiana di Robotica e Macchine Intelligenti
	Roma, Italia, Oct. 2022

[P5]	Viviana Morlando, Fabio Ruggiero
	"Tethering a Human with a Quadruped Robot: A Guide Dog to Help Visually Impaired
	People",
	Submitted to 2023 IEEE International Conference on Robotics and Automation,
	London, United Kingdom, 2023
[P6]	Viviana Morlando, Gianluca Neglia, Fabio Ruggiero,
	"Drilling task with a quadruped robot for silage face measurements,"
	Submitted to the 2023 IEEE International Workshop on Measurements and
	Applications in Veterinary and Animal Sciences,
	Naples, Italy, 2023
[P7]	Viviana Morlando, Till Karbacher, Salman Faraji, Marco Hutter
	"An MPC framework for an underconstrained floating cable-driven robot"
	Submitted to "Robotics and Automation Letters"

PhD thesis overview (1/3)

- Problem statement
 - Control of limbed parallel robots able to work in challenging environments
 - Legged robots: easily subject to disturbances given by irregularities in the terrain
 - Cable-driven robots: easily subject to disturbances and irregular movements given by the flexibility of the cables

PhD thesis overview (2/3)

• Objective

 Realization of framework able to improve performance of limbed parallel robots against disturbances

PhD thesis overview (3/3)

- Methodology
 - Optimal control solutions

• Robust locomotion for legged robots

- ∻ Retain the balance
- Adapt foothold to the roughness of the terrain
- Reject external disturbances

- **Proposed solution:** Whole-body control with disturbance observers
- Methodologies:
 - Decouple the centroidal's dynamics (the dynamics of the center of mass) from the legs' ones
 - Consider the disturbances acting both on the center of mass and on the swing and stance legs

Novelties:

- Disturbances acting on the swing legs are explicitly addressed
- A hybrid observer is used for the center of mass, composed of two different kinds of observers, a momentum- and an acceleration-based
- Only directly measurable values from the IMU are employed in the hybrid observer

Highlights:

- Two random disturbances are applied: the first acting on the CoM and the second acting on a randomly chosen point of one of the legs
- The force's magnitude changes randomly between **2.5 N** and **40 N** every four seconds
- Tested in presence of noisy measurements, additive white Gaussian noise: Std Dev = 10%

• A guide dog to help visually impaired people

- The quadrupedal robot is enabled to guide a human through a leash
- The observer is employed to retrieve information about the tension of the leash
- A supervisor is realized based on the interaction force measured through the observe

Tethering a Human with a Quadruped Robot: A Guide Dog to Help Visually Impaired People

Viviana Morlando and Fabio Ruggiero

PRISMA Lab Department of Electrical Engineering and Information Technology University of Naples Federico II www.prisma.unina.it

Model predictive control (MPC) for cable-driven robots

- Realize a smooth movement modulating the cables tension
- Minimize oscillations caused by the flexibility of the cables

The floating manipulator has been developed at the Robotic System Lab, ETH Zurich. Considering its main characteristics, it is:

- A cable-driven robot
- Suspended at four poles
- Designed for gardening application
- An underactuated robot: 4 DoFs

Novelties:

- A model predictive controller for an underconstrained cable-driven parallel robot
- Centroidal dynamics are employed
- A smooth movement with damped oscillations is obtained

Without MPC

Thank you for your attention!

