

Year end presentation PhD student: Giovanni Stanco 'Performance of wireless networks for IoT and CPS: empirical evaluation and cybersecurity applications'

> Tutor: prof. Giorgio Ventre co-Tutor: prof. Alessio Botta, ing. Flavio Frattini

Cycle: XXXV

Year: Third (2021/2022)

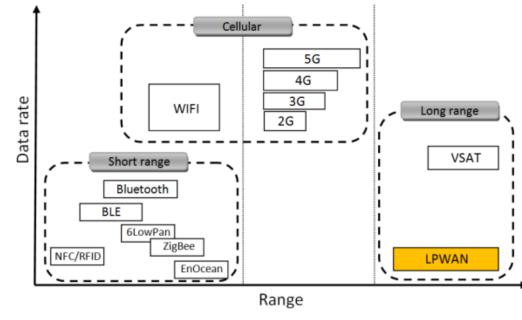
Background information

- MSc degree: Telecommunications Engineering
- Research group/laboratory: ARCLAB
- PhD start date end date: Nov. 2019 Oct. 2022
- Scholarship type: company funded scholarship
- Partner company: RisLab SRL
- Periods in company: Jan. 2020 Oct. 2021
- Periods abroad: Lancaster University (UK), Nov. 2021 – Apr. 2022

Summary of study activities

- MSc courses:
 - Protocolli per reti mobili (prof. Avallone)
 - Network security (prof. Romano)
 - Software security per sistemi industriali (prof. Cotroneo, prof. Natella)
- Ad hoc courses:
 - Scientific programming and visualization with Python (prof. Botta)
 - Strategic orientation for STEM research and writing (Dr. Fraser)
 - Statistical data analysis for science and engineering research (prof. Pietrantuono)
 - Version control with Git (Dr. Robin Long)
 - Introduction to the Linux Command Line (Dr. Robin Long)

Summary of study activities

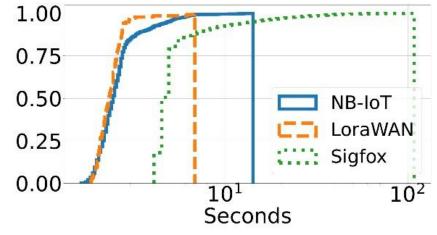

- PhD schools:
 - UK Cyber Security PhD (University of Surrey, Jan. 2022)
 - "Jacob T. Schwartz International School for Scientific Research Lipari School on Advanced Networking Systems" entitled Programmability, Security, and Algorithmic Challenges in Future Networks (Lipari, July 2022)

Research area

- Performance and security of wireless networks for IoT and CPS.
- IoT market is forecasted to be worth \$ 5.5+ trillion by 2030.
- Resource-constrained devices are used for IoT and CPS.
- Different communications technologies can serve different use cases.

Research activities: overview

- My main contribution is the study of the performance and security of wireless networking technologies for IoT and CPS.
- The activity was carried out in three consecutive steps:
 - Empirical evaluation of the performance of most prominent Low Power
 Wide Area Networks (LPWAN) using real devices and commercial
 connectivity
 - Design, implementation, and deployment of a platform for continuous resource monitoring for CPS
 - Using the knowledge acquired to do secure offloading of computational tasks to edge nodes considering the performance of the network

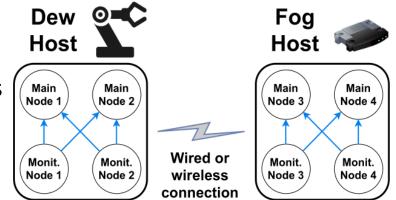

Research activities: step one

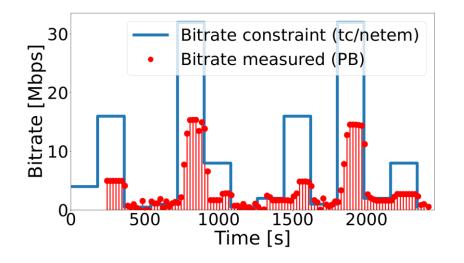
• Empirical evaluation of Low Power Wide Area Networks (LPWAN)

Sigfox	LoRaWAN	NB-IoT	
ISM Bands (868, 915 MHz)	ISM Bands (868, 915 MHz)	Licensed LTE Bands	
Duty Cycle	Duty Cycle	Monthly Bundle	
Subscription	Free of charge	Prepaid or subscription	

 Collection of periodic messages sent by IoT development boards

	Min	Avg	90th perc.	Max
LRW	1.8 s	2.4 s	2.7 s	6.8 s
NBI	1.6 s	2.7 s	3.7 s	14.1 s
SFX	4.1 s	6.3 s	8.0 s	108.3 s

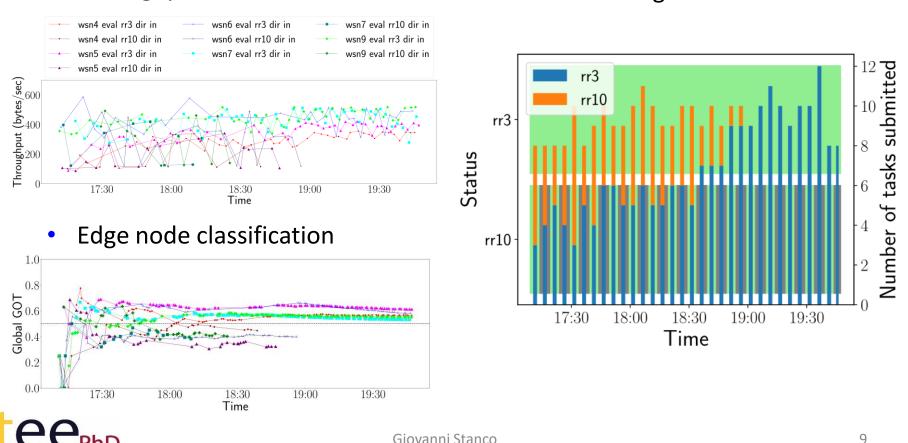




Research activities: step two

- Monitoring platform for CPS
 - Continuous and automatic performance monitoring
 - Based on independent monitoring entities ('nodes')
 - Communicating the monitored quantities to other applications
 - Use case in a robotics application for Search and Rescue activities

Monitoring nodes implemented		
CPU utilization		
Battery charge		
Socket queue size		
Passive bitrate		
Achievable throughput		
Application latency		



Research activities: step three

- Security application based on network monitoring
 - Task offloading: decision on the best edge node based on the network performance

Throughput measurement

trical engineering

Task assignment

Research products

	Giovanni Stanco, Alessio Botta, Giorgio Ventre				
[P1]	DewROS: a platform for informed Dew Robotics in ROS				
	2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and				
	Engineering (Mobile Cloud), Oxford (United Kingdom)				
	Giovanni Stanco, Alessio Botta, Flavio Frattini, Ugo Giordano, Giorgio Ventre				
[P2]	Comparing the performance of LPWAN technology for IoT: the case of Sigfox, LoRaWAN and				
	NB-IoT				
	2022 IEEE International Conference on Communications, Seoul (South Korea)				
[P3]	Giovanni Stanco, Alessio Botta, Flavio Frattini, Ugo Giordano, Giorgio Ventre				
	Survey: 'On the security of the IoT wireless communication technologies'				
	Journal article under review				
[P4]	Giovanni Stanco, Matthew Bradbury, Alessio Botta, Flavio Frattini				
	Assessing Network Performance as Behavioural Trust in IoT Computation Offloading				
	Conference paper under review				

Third year credits

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	1,20	2,10	6,70	0	10
Bimonth 2	4	0,80	5,20	0	10
Bimonth 3	1,20	1,80	7	0	10
Bimonth 4	0	1,50	8,50	0	10
Bimonth 5	6	0	4	0	10
Bimonth 6	0	0	10	0	10
Total	12,40	6,20	41,40	0	60

PhD thesis overview

- Problem statement
 - Knowledge and trust of wireless networks for IoT and CPS is not enough for them to be used in applications having strict security requirements (e.g. in banks)
- Objective
 - Shedding lights on the performance and security of these technologies to use them in real, novel use cases
- Methodology
 - Experimentations on real testbeds
 - Testing in controlled and uncontrolled conditions
 - Creation of approaches based on such information for security purposes

PhD thesis overview

- Originality and contribution
 - Survey about security features of short range and long range networks for IoT and classification of attacks (105 paper)
 - Comparison of the most widespread LPWAN on the same device
 - Investigating their performance in a real deployment
 - Metrics never considered in previous work (e.g. message latency)
 - Use of these metrics for trusted offloading to edge nodes.
 Previous work did not consider network performance for this application.

THANK YOU FOR YOUR ATTENTION

