

Francesco Altiero Churn-based Approaches for Regression Test Prioritization

Tutor: Adriano Peronco-Tutor:Anna CorazzaCycle: XXXVIYear: Third

Background information

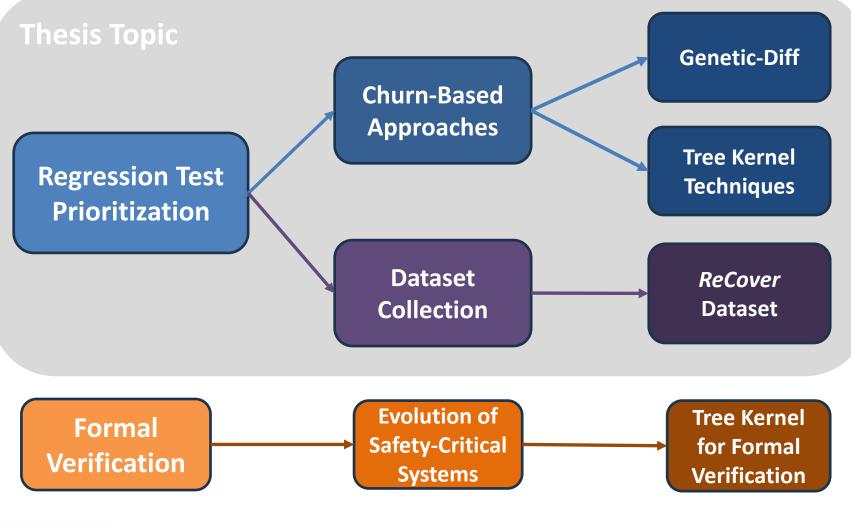
- MSc in Computer Science at University of Naples Federico II
- KnoME Lab (Knowledge, Management and Engineering)
- PhD started on **01/11/2020** and ended on **31/01/2024**
- Scholarship type: Funded by **UniNA**
- Periods abroad: Visiting student @ SEG (Software Engineering Group) at Technische Universitat Wien in Vienna, Austria, supervised by Prof. Jurgen Cito.

Summary of study activities

- (Some) attended **Courses**:
 - Statistical Data Analysis for Science and Engineering Research (*ad-hoc*)
 - Scientific Programming and Data Visualization with Python (*ad-hoc*)
 - Combinatorial Optimization (*MSc in Computer Science*)
 - Neural Networks and Deep Learning (*ad-hoc*)
- Attended 38 Seminars.
- Attended **Conferences**:
 - 19th International Conference on Mining Software Repositories (MSR), May 18-20, 2022
 - 48th Euromicro Conference Series on Software Engineering and Advanced Applications (DSD/SEAA), Aug 31 – Sep 2, 2022
 - 22nd International Conference of the Italian Association for Artificial Intelligence (AIxIA), 6-9 Nov, 2023

Research Area

Software Testing → **Regression Test Prioritization (RTP)**


- What: *Re-arrange* the order of execution of test cases trying to *maximize* the rate of *fault-detection*
- When: Software evolutionary scenarios with limited resources for testing phase
- Why: *Reduce* the cost of *Regression Testing*

My focuses:

- RTP approaches based on *source code changes* (**code churn**)
- Data and tools to support RTP research

Research Contribution

Research products (1/2)

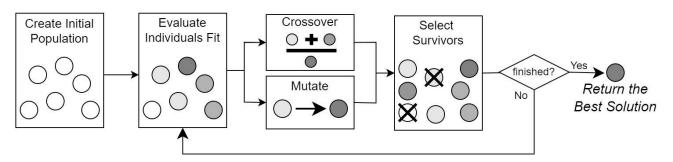
[J1]	F. Altiero , A. Corazza, S. Di Martino, A. Peron, L. L. L. Starace, <i>Regression Test Prioritization Leveraging Source Code Similarity with Tree Kernels</i> , Journal of Software: Evolution and Process , DOI: 10.1002/smr.2653. In Production, 2024
[C1]	 F. Altiero, A. Corazza, S. Di Martino, A. Peron, L. L. L. Starace, Inspecting Code Churns to Prioritize Test Cases, International Conference on Testing Software and Systems (ICTSS 2020), DOI: 10.1007/978-3-030-64881-7_17. Naples, Italy, Dec. 2020, pp. 272-285, Springer
[C2]	F. Altiero , A. Corazza, S. Di Martino, A. Peron, L. L. L. Starace, <i>ReCover: a Curated Dataset for Regression Testing Research,</i> International Conference on Mining Software Repositories (MSR 2022), DOI: .Pittsburgh, PA, USA, May 2022, pp. 196-200, IEEE

Research products (2/2)

[C3]	 F. Altiero, G. Colella, A. Corazza, S. Di Martino, A. Peron, L. L. L. Starace, <i>Change-Aware Regression Test Prioritization using Genetic Algorithms</i>, International Conference on Software Engineering and Advanced Application (SEAA 2022), DOI: 10.1109/SEAA56994.2022.00028. Meloneras, Spain, Sep. 2022, pp. 125-132, IEEE
[C4]	 F. Altiero, A. Corazza, S. Di Martino, A. Peron, L. L. L. Starace, <i>AI-based Fault-proneness Metrics for Source Code Changes,</i> International Conference on Software Process and Product Measurement (MENSURA 2023), Rome, Italy, Oct. 2023. To appear in the proceedings
[C5]	 F. Altiero, A. Corazza, S. Di Martino, A. Peron, L. L. L. Starace, <i>Tree Kernels to Support Formal Methods-based Testing of Evolving Specifications,</i> 4th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis (OVERLAY) in 21st International Conference of the Italian Association for Artificial Intelligence (AIxIA 2023), Rome, Italy, Nov. 2023. To appear in the proceedings

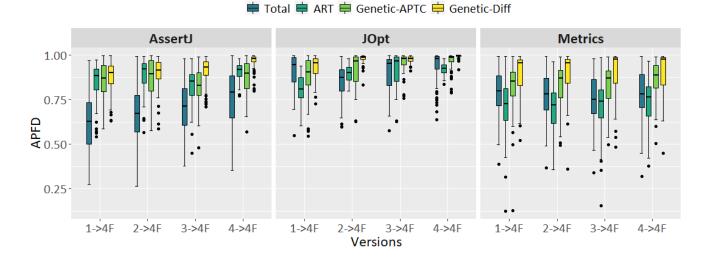
PhD thesis overview

RTP aims to enhance the confidence of **developers** in releasing new software versions and reduce its time-to-market.


- Problem: source code changes can introduce defects in software.
 Proposed RTP techniques often neglect churn information.
 - Objective: design RTP techniques leveraging accurate evaluation of codechurn to prioritize test cases exercising fault-prone changes.
 - Methodology: empirical evaluation of designed churn-based techniques and comparison with state-of-art RTP approaches.
- Problem: datasets to evaluate RTP techniques are not readily available.
 Researchers would benefit from shared data.
 - Objective: collect a dataset of software projects representing real-world evolutionary scenarios to support RTP experimentation.
 - Methodology: Mining software repositories to collect representative contexts of software evolution.

Contribution 1 Genetic-Diff to prioritize test cases

- Genetic Algorithms are popular in RTP
 - In literature, these techniques do not consider code changes in the search for a permutation!
- Design of **Genetic-Diff**:
 - *Novel fitness function*: APTC_{diff} measures the rate of coverage of changed code
 - Novel crossover operator: CPX mixes test cases of two parents to prefer test cases covering churn

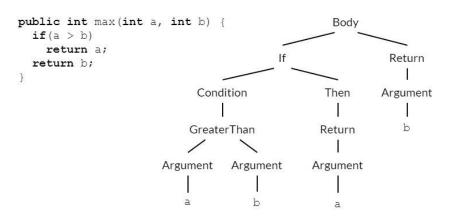

Empirical Evaluation

- Evaluation on 12 versions of 3 heterogeneous Java projects
 - Used in several RTP studies
 - Faults automatically injected via code mutation
 - 100 faulted variants for each version, over than 1k different evolutionary scenarios
- **Metric**: rate of fault-discovery (**APFD**)
- Compared with **3** state-of-art **baselines**
 - One deterministic, one meta-heuristic, one traditional Genetic Algorithm

Results

Genetic-Diff outperformed all the baselines on all projects

 The experimentation suggests that leveraging code churn can enhance fault-detection performance



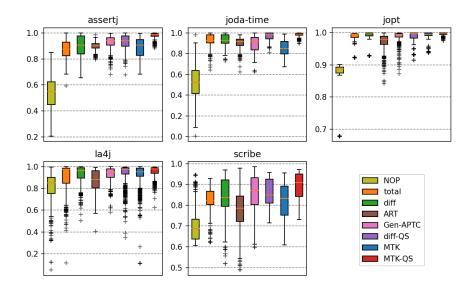
Contribution 2 Refined evaluation of code churn with Tree Kernels

Tree Kernels and Code Churn

- Few RTP techniques leverage code changes
 - They typically consider simple textual differences
- Source code has a natural tree-based representation through **ASTs**
- Tree Kernels evaluate structural and semantical similarity of treebased structures
 - Profitably employed in NLP and Software Engineering
- A refined measure of the extent of changes can be evaluated by TK on code ASTs

TK Prioritization Techniques

- **MTK**: a novel RTP technique employing TK
 - 1. Evaluate the **extent** of changes of two versions of **evolving methods via TK**
 - 2. Scores each test case according to the sum of changes in covered methods
 - **3. Sorts** the test suite accordingly
 - MTK-QS: re-arranges the permutation using the Quotient-Set according to MTK test cases scores
 - *Rationale*: test cases covering the same set of changed methods have the same score
 - Increases the diversification of coverage


Empiric Evaluation

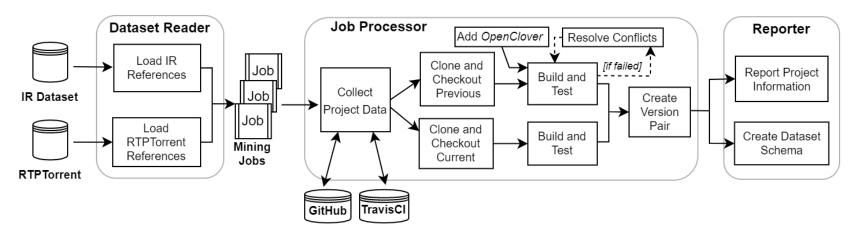
- Experimentation on 5 Java projects and 25 different software versions
 - Mutation faults injected as for Genetic-Diff
 - More than 5k different evolutionary scenarios
- Comparison with **5 baseline** RTP techniques
 - Coverage-based, difference-based and non-deterministic
- Metrics:
 - fault-detection
 - APFD, Percentage-to-First-Fault, Percentage-to-Last-Fault
 - effective execution time

Results

- MTK was comparable to the baselines
 - Due to redundancy in scheduling
- MTK-QS outperformed all other techniques
 - Redundancy of MTK has been resolved by Quotient-Set

- Results suggests that a refined evaluation of changes significantly improves the fault-detection performance if coverage is further diversified
 - Scores evaluated by MTK can be a fingerprint of the set of covered changed methods for test cases

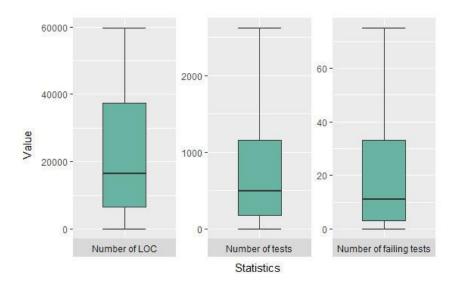
Contribution 3 ReCover: a dataset to foster RTP research



Efforts on Collecting Datasets

- Datasets in literature are **not generally applicable**
 - Lack of information for different techniques
 - Researchers need to manually re-execute the build to obtain required information (e.g., code coverage)
- Open-source datasets typically **do not present real faults**
 - Researchers rely on synthetic faults
 - This may limit generalizability of findings
- Recent datasets include projects with real faults
 - Often **only references** to remote location are provided
 - Refs may **expire** and projects could not be retrieved
 - Still needed to **re-execute** the build to obtain **auxiliary information**
- A dataset with real faults and enriched with useful information can reduce the time from design to experimentation

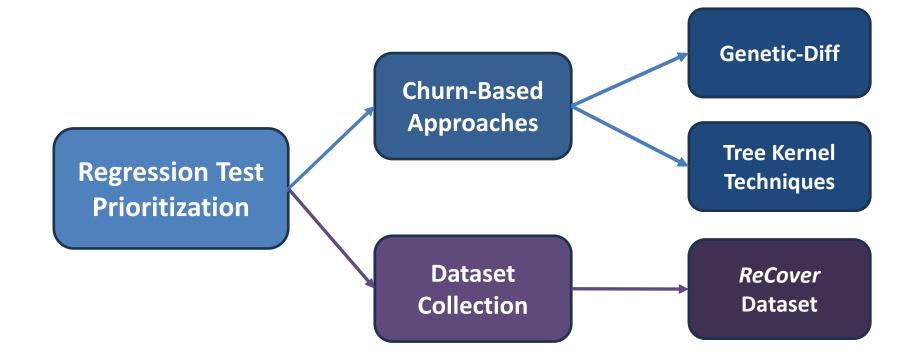
Mining the Dataset



- Starts from 2 reference-based RTP datasets
- Each entry is retrieved from remote repositories
 - Querying TravisCl and GitHub
- The build and testing phase of each version is executed
 - ... in a *docker* container to resemble its original environment
 - Per-test coverage data are collected as well
- Collected projects are completely stored with their reports
 - Dataset metadata available in SQL and XML format

ReCover

- **114** evolutionary scenarios among **28** Java projects
 - Projects of different sizes and nature
 - Real test case failures due to real-world faults
 - Full source code, coverage reports and test execution reports
 - Per-project *docker* containers to readily re-execute the builds when needed
 - To date, the dataset had more than **60 downloads** and has been employed in **3 RTP and software testing** papers.



Thank you! Any Question?

Francesco Altiero Churn-Based Approaches for Regression Test Prioritization

