





# Babar Ali

## Self-Assembled Nanostructured Substrates for ATR-SEIRA Applications

## Tutor: Prof. Cutolo Antonello Co-Tutor: Prof. Marco Pisco

Cycle: XXXVI

Year:3<sup>rd</sup>





## My background

- MSc. degree:Electronics and Communication Engineering
- Research group/laboratory: Information Photonics and Optical Communication
- PhD start date: November,2020
- Scholarship type: UNINA

## Summary of Study Activities

## Briefly summarize the study activities of the academic year

- Attended (Courses, Seminars, PhD Schools)
- The optimization of numerical simulations of proposed SEIRA substrates and the experimental (Fabrication, Morphological characterisation by SEM and spectral characterization by ATR-FTIR) SEIRA substrates are the main areas of my third-year research activity.
   Microscopy Optical Coherence Tomography Biomedical

1st

2nd

3rd

Expected

Total

## Ad hoc PhD courses / schools

- Software Defined Radio Applications for Radar and Localization
- Ultra-High Field Magnetic Resonance Imaging
- Virtualization technologies and their applications
- Machine Learning for Science and Engineering Research

## Conferences / events attended

Bio Photonics Conference



**es of the academic year** SEIRA substrates and the experimental (Fabrication, Morphological by ATR-FTIR) SEIRA substrates are the main areas of my third-year

**Seminars** 

18.65

4.1

0

22.75

10 - 30

Research

45

44

72

161

80 - 140

**Tutorship** 

0

0

0

0

0 - 4.8

**Total** 

96.75

63.1

72

231.85

<u>Microscopy</u>, <u>Optical Coherence Tomography</u>, <u>Biomedical</u> <u>Imaging</u>, <u>Photoacoustic Imaging</u>, <u>Lasers & Therapeutics</u> and <u>Spectroscopy</u>

## **Research activity: Numerical Simulation**

- Designing of close packed array of Nano disks-based Antenna and Simulation of the SEIRA substrate
- Parametric Analysis (Gap, Thickness of Nano Disk )
- SEIRA Gain Calculations

Courses

33.1

15

0

48.1

30 - 70

## **Research activity: Experiment**

- Fabrication Procedure
- Morphological characterization by SEM
- Spectral characterization by ATR-FTIR
- SEIRA Enhancement Factor Calculation
- Comparison between numerical and experimental results Results

Babar Ali

#### **Research activity: PhD Thesis Overview and Objective**

ATR-FTIR: Attenuated Total Reflectance Fourier-Transform Infrared SEIRA: Surface-Enhanced Infrared Absorption

## Developtmnet of atctive SEIRA substate with ATR-FTIR

- To access the rich vibrational information of biomolecules and enables the investigation of uniqe structural chracteristic of biosamples
- Identify and develop novel and cost effective and highly efficient plasmonic nanostructures exhibiting good SEIRA properties (namely, the gain factor) in order to improve the detection characteristic of an ATR-FTIR instrument for biological analysis



## **Research activity: SEIRA and State of Art**

- SEIRA-active substrates are a crucial component in biosensing, greatly enhancing the sensitivity of infrared spectroscopy.
   Electromagnetic Enhancement (EME)
   Chemical Enhancement (CE)
- The EME mechanism (Enhancement effect of electric field intensity on the substrate) and CE (orientationally substrate-molecule interaction at the interface ).
- Localized enhancements of the electromagnetic field (EMF) are responsible for the amplification of the signals, and hot spots are defined as spatial regions of highly intense local field enhancement.





#### Research activity: Design and Simulation of the SEIRA substrates



Electromagnetic Waves, Frequency Domain

 $\epsilon_{Au}(\omega) = 1 - \frac{\omega_p^2}{\omega(\omega + i\omega_c)}$ Plasma frequency:  $\omega_p$  Collision frequency:  $\omega_c$   $\theta c = sine^{-1} (n_{Ref}/n_{Inci})$ The critical angle ( $\theta c$ )
Incident angle :  $n_{Inci}$ 

(Nanoantenna)) between the PML layers. PML layers are meshed by using the

swept option (Distribution based mesh). See in (b)

Drude model for the dielectric function of Gold

Reflection angle :  $n_{Ref}$ 



PBC (Periodic boundary conditions)

Cheng Shi, DOI: 10.1039/C8NA00279G (Communication) Nanoscale Adv., 2019, 1, 476-480. W.-G. Yeo, "Far-IR multiband dual-polarization perfect absorber for wide incident angles," Microw. Opt. Technol. Lett. 55(3), 632–636 (2013).

Babar Ali

#### Research activity: Simulation Results (Parametric Analysis) NANO Disk Period (p) = 750 nm

Influence of GND Diameter(D) and Gap(G) on tunability . Period (P) =750nm.

P is fixed ,and D varies from 745nm to 715nm with 10nm Steps, and G varies from 5 to 35nm.

80nm

100nm



6.03

6.07



#### **Research activity: Simulation Results**

#### Absorbing Material model

A permittivity model for bio sample is established .The both real(n) and imaginary(k) part of the refractive index, as  $n^2 = n + ik$ , are shown in figure.

$$\varepsilon_{\omega} = \varepsilon_{\infty} + \frac{A\omega_0^2}{\omega_0^2 - \omega^2 - i\gamma\omega}$$

**Equation of Drude-Lorentz** describes the relative permittivity  $\varepsilon_{\omega}$  of the bio sample. An oscillator with amplitude A is used to imitate absorption. While  $\omega_0$ ,  $\gamma$  are eigenfrequency and damping factors, respectively. Hence, the parameters we chose to determine the permittivity of the bio sample in MATLAB, are  $A = 10^{-5}$ ,  $\varepsilon_{\infty} =$ 1.8 and  $\gamma = 2.8 \times 10^{11}$ .





#### Drude Model for Bio Sample(Refractive Index)



#### Research activity: Simulation Results (Parametric Analysis) NANO Disk Period (p)= 750 nm



#### Research activity: Simulation Results (Numerical SEIRA Gain Calculations)



Babar Ali

## **Research activity: Experiment(Fabrication and SEM Characterization)**



## Research activity: Experimental characterization Spectral characterization by ATR-FTIR



## Research activity: Experimental characterization Spectral characterization different Spots(Uniformity)



## **Research activity: Experimental Characterization**

### Monolayer Preparation on the SEIRA substrate

- Immersed in a 1 mM 4-aminothiophenol (4-ATP) (Merck-Millipore Milan, Italy) solution in ethanol for 16 hours, washed with pure ethanol to remove the excess unbound molecules, and air dried.
- Uniform self-assembling monolayer of 4-ATP covalently bound to the NA
  - ATP (thickness=30nm),





Babar Ali

information technology electrical engineering

## Research activity: Experimental characterization



Figure (a-d) illustrates the change in reflectance spectra  $\Delta R$  calculations for our proposed GNDs closed array-based NA at three different spots in the presence of 4-ATP monolayer. (d) 2D representation of changes in reflectance is  $\Delta R$  as a function of different spots.



| Name   | SEIRA Gain Factor | SEIRA EF                    |  |
|--------|-------------------|-----------------------------|--|
| Spot 1 | 993               | $2.72\times10^{5}$          |  |
| Spot 2 | 995               | $2.75\times10^{5}$          |  |
| Spot 3 | 997               | $2.77\times\mathbf{10^{5}}$ |  |

Babar Ali

## **Research activity: Experimental characterization**

**Comparison between numerical and experimental** P = 772nm,  $t_m = 30nm$ , D = 757nm results

Figure (a-b) represents the fitting of experimental ATR-FTIR reflection spectra with simulated spectra in the presence and absence of absorbance analyte 4-ATP monolayer.



(a) Without 4-ATP Reflectance (Simulation and Experiment) Spectra Fitting

(b) With 4-ATP Reflectance (Simulation and Experiment) Spectra Fitting



#### Conclusion

- We developed novel SEIRA substrates to be used in ATR/FTIR instruments for biological sensing applications
- The SEIRA substrate is composed of a regular pattern of gold nano disks exhibiting hotspots nanogaps.
- Numerical analysis was used to identify the geometric constraints which leads to an optimized SEIRA substrate featuring a regular pattern of nanogaps with intense hotspots
- SEIRA substrates have been fabricated by using a self-assembling approach to provide cost-effective SEIRA substrates
- ATR FTIR instruments has been used to characterize and assess the fabricated substrates performances
- SEIRA Enhancement Factor as high as 10<sup>5</sup> has been obtained
- Experimental results have been compared with numerical predictions showing a good matching
- Overall, the proposed SEIRA substrate can provide a viable tool to perform IR absorption spectral analysis with superior performance with respect to standard FTIR approaches

#### **Future Prospective**

- Future developments pertain to
- Use of the proposed approach to detect specific biomarkers in liquid biopsy
- Functionalize the substrate to get further boost the detection specificity





Thank You

