

Marco Grazioso Building task-oriented dialogue systems for industry: a graph-based framework

Tutor: Prof. Francesco Cutugno Cycle: XXXVI co-Tutor: Ph.D. Valentina Russo Year: Third

Background information

- Master Degree: Computer Science
- **Research group/laboratory**: Urban/Eco Research center
- **PhD start- end dates** : 01/11/2020 31/01/2024
- Scholarship type: company funded scholarship
- Partner company: Logogramma s.r.l
- Period abroad: Heriot-Watt University, Edinburgh, UK from 04/02/2023 to 31/07/2023

Summary of study activities

- 7 courses (or PhD school).
 - Human Language Technologies
 - Game Engine Architectures and Interactive Experiences
 - Neural networks and deep learning
 - Lectures on Computational Linguistics 2022
 - Lectures on Computational Linguistics 2023
- **63 seminars.** most of them on AI, DNN, NLP, and Dialogue systems
- Last conferences
 - Italian Conference on Computational Linguistics (CLIC-it), Venice, November 30 -December 2, 2023 (poster presentation)

Dialogue Systems

Dialogue manager

- Dialogue state tracking
- Dialogue policy

Research results

- Implementation of a domain-independent dialogue management graph structure handling complex dialogue flows
- Implementation of a graph structure supporting the training of stat-of-the-art intent and entity recognition models
- Implementation of a graph structure for the dialogue state tracking task
- Company distributed the solution obtaining positive results

Research products

	M. Grazioso, A. Suglia,					
[P1]] An Analysis of Visually Grounded Instructions in Embodied AI Tasks,					
	9th Italian Conference on Computational Linguistics,					
	Venice, Italy, NovDec. 2023, CEUR-WS					
[P2]	M. Grazioso, A. S. Podda, S. Barra, F. Cutugno					
	Natural interaction with traffic control cameras through multimodal interfaces,					
	International Conference on Human-Computer Interaction					
	Washington DC, USA, Jul. 2021, pp. 501 - 515, Springer, DOI: 10.1007/978-3-030-77772-2_33.					
[P3]	V. Russo, A. Mancini, M. Grazioso, M. Di Bratto,					
	Graph-based representations of clarification strategies supporting automatic dialogue management,					
	Italian Journal of Computational Linguistics,					
	vol. 8 (1), pp. 1013-1062, 2022, DOI: 10.4000/ijcol.984					
	A. Origlia, M. Grazioso, M. L. Chiacchio, F. Cutugno					
[P4]	3d avatars and semantic models annotations for introductory cultural heritage presentations,					
	2022 AVI-CH Workshop on Advanced Visual Interfaces for Cultural Heritage,					
	Rome, Italy, Jun. 2022, Vol-3243, CEUR-WS					
[P5]	A. Origlia, M. L. Chiacchio, M. Grazioso, F. Cutugno,					
	Increasing visitors attention with introductory portal technology to complex cultural sites,					
	International Journal of Human-Computer Studies,					
	vol. 180, 2023, DOI: 10.1016/j.ijhcs.2023.103135.					

Research products

[P6]	F. A. D'Asaro, L. Raggioli, S. Malek, M. Grazioso, S. Rossi,
	An application of a runtime epistemic probabilistic event calculus to decision-making in e-health
	systems,
	Theory and Practice of Logic Programming,
	vol. 23(5), pp. 1013-1062, 2023, DOI:10.1017/S1471068422000382.
[P7]	M.Campi, V.Cera, F.Cutugno, A. Di Luggo, P. Giulierini, M. Grazioso, A. Origlia, D. Palomba,
	Virtual Canova: a Digital Exhibition Across MANN and Hermitage Museums,
	Representation Challenges - New Frontieres of AR and AI Research for Cultural Heritage
	and Innovative Design,
	vol. 1, pp. 253-260, 2022, DOI: 10.3280/oa-845-c219.

The company adopted the framework as the base for their solutions.

PhD thesis overview

Development of a joint structure supporting dialogue management, model training, and complex dialogue scenarios

- Objective
 - domain-independent dialogue management
 - domain-specific language understanding
 - management of different pragmatic scenarios
- Methodology
 - graph-based representation
 - Pre-trained language models for domain adaptation

[1] Russo, V., Mancini, A., Grazioso, M., & Di Bratto, M. (2022). Graph-based representations of clarification strategies supporting automatic dialogue management. *IJCoL. Italian Journal of Computational Linguistics*, 8(8-1).

Domain modelling

- Intents represent user intention
- They could be specialised into micro-intents
- Each intent has his own slots
- Slots are related to an entity type

Domain modelling

- Entities can be related to dictionaries
- Dictionaries can be populated from different sources

Dialogue modelling

- Filling functions define how the slot must be filled
- Validation functions define how the value must be validated

Dialogue state modelling

electrical engineering

Dialogue flow

 The dialogue is represented through a chain of nodes

Domain connection

 Recognised intents and entities are connected to the domain nodes

External knowledge

 Recognised entities can be in a relationship with data coming from other sources (WikiData and similar) (Entity Linking)

Dialogue state enabled task

- Previously mentioned items through the FOLLOWED_BY relationship
- Knowledge about the user through User node
- Knowledge about the world through the external knowledge connection
- Conflict search by navigating the utterances sequence
- Pattern search. Recurrent conversation patterns can be found and then used to instantiate specific dialogue policies.

On field results

• Human-human conversation in retail field

Total conversations t ime (minutes)	Total number of conversations	Average turns per conversation
204:34:00	72	29.40

• Human-machine conversation in retail field

Total number of conversations	Average turns per conversation
656	6.12

Next step: situational dialogue

Goal: "Rinse off a mug and place it in the coffee maker"

Preliminary results

- Starting from a state-ofthe-art model
- We trained a NLU model
- We conducted an error analysis to investigate situational issues

Model	Language processing error rate
FILM	0.196
Ours	0.117

Error rate on all language processing tasks on unseen validation set.

Preliminary results

Challenges

- Commonsense knowledge
- Visual context

- Multi-modality
- Interactive skills

Error type	Subtype	Rate
	Mismatching	40/821
Referential ambiguity	Underspecification	24/821
	Others	32/821
Target object coarch	Object not visible	171/821
	Spatial understanding	106/821
Others interaction errors		218/821

Thanks For Your Attention

