

Marco Boddi

Novel algorithms for Direction-of-Arrival estimation in radar and communication problems

Tutor:Prof. A. De MaioCycle:XXXVIIYear:2

My background

- Master Science degree: Telecommunications Engineering at the University of Pisa
- **Research group/laboratory:** Radar Signal Processing and Electronic Defense Research Group (RSPRG) at UniNa, DIETI
- **Tutor:** Prof. A. De Maio
- **PhD start date:** 01/11/2021, XXXVII Cycle
- Scholarship type / Partner organization: ad-hoc agreement with the Italian Government, Presidency of the Council of Ministers

Research field of interest

- Radar and digital communication signal processing
 - Antenna array / multi-channel processing
 - Non cooperative radio-localization
 - Direction-of-Arrival estimation
 - Signal recognition and classification
 - Compressive sensing

Summary of study activities

Study activities

- Spectral analysis
- Compressive sensing and sparse representation techniques
- Iterative optimization methods

• Ad hoc PhD courses / schools

- On the challenges and impact of Artificial Intelligence in the Insurance domain
- Summer school "Frontier Technologies for «Space 2.0» Communications "

Courses borrowed from MSc curricula

Terrestrial and satellite radio-localization

Other courses and seminars

- "WiFi and Bluetooth Low Energy: architecture and Security" by CNIT Rome
- "2023 virtual distinguished lecturers series", by IEEE AESS

Conferences / workshops attended

- NATO SET-319 Specialist Meeting on "New Mathematical Frontiers for Multi-Dimensional Radar Systems", Edinburgh, 21-23 Feb 2023
- NATO Lecture Series SET-257 RLS on "Compressive Sensing Techniques for Radar and ESM Applications", Rome, 15-16 May 2023

Research activity: Overview (1)

Problem of interest

•

- Estimate the **Direction-of-Arrival (DoA)** of radio signals. Main assumptions:
 - Non cooperative emitters and unknown signal formats;
 - Processing based on signal samples available at a receiving antenna array.
- (some) Areas of applications:
 - Electronically-Scanned-Array (ESA) radars;
 - Search&Rescue operations, natural disasters relief;
 - Environmental protection and spectrum management authorities;
 - Military strategic and tactical situation awareness;
 - Radio navigation and air/maritime traffic monitoring;
 - Radio mobile networks management and optimization.

Research activity: Overview (2)

Research objectives and contributions

- Problem: joint array calibration and DoA estimation under antenna coupling conditions
- Objectives:
 - Identify suitable mathematical transformations in order to yield to the situation to an equivalent Uniform Linear Array, with a Modelling Error Matrix, starting from the assumptions of circular antenna array and a symmetric circulant Toeplitz structure for the antenna coupling matrix;
 - Obtain an online iterative optimization method (MC-UCA-ESPRIT) capable of estimating Direction of Arrivals, Modelling errors and calibration terms, covariance matrix;
 - Obtain convergence and accurate estimates with few data snapshots and low Signal-to-Noise ratios.

Marco Boddi

Research activity: Overview (3)

Research objectives and contributions

- Problem: characterize dual-polarization arrays for DoA estimation
- Objective:
 - Derive a mathematical framework for the description of the DoA estimation problem with concentric / collocated circular arrays with orthogonal polarizations
 - Derive the mathematical solution for conventional DoA estimators (Maximum Likelihood, Conventional BeamFormer, Capon Minimum Variance/Power Distortionless Response)
 - Derive performance bounds for Doa Estimation (e.g. Cramer-Rao lower bound)
 - Prove robustness of the dual-pol array and combined pol estimators with respect to unknown or changing polarization states

Research activity: Overview (4)

Research objectives and contributions

- Problem: extend sparsity techniques for DoA iterative estimation techniques in dual polarization arrays
- Objective:

electrical enginee

- Derive a mathematical framework for the description as a sparse problem
- Apply and adapt iterative sparse learning estimators:
 - POL-SPICE (Polarimetric Sparse Iterative Covariance-based Estimation)
 - POL-SLIM (Polarimetric Sparse Learning via Iterative Minimization)
- Evaluate performances for the new estimators, show accuracy and robustness w.r.t. conventional estimators

Research activity: Overview (5)

• Near future directions, methodologies and intended contributions:

- Extend the estimation methods and mathematical framework in order to deal jointly with multiple dimensions (frequency, azimuth, elevation, polarization, range, etc.)
- Adapt theoretical models to deal with radio scenarios of specific interest (starting from passive direction finding in HF)
- Model and architecture validation through on-field measurements with commercial-grade SDRs

Products

• Conference papers

[C1]	M. Boddi, M. Rosamilia, A. Aubry, and A. De Maio, "Iterative Direction-of-Arrival Estimation for a Uniform Circular Array in the Presence of Mutual Coupling", presented at the NATO SET-319 Specialist Meeting, 2023.
[C2]	M. Boddi, M. Rosamilia, A. Aubry, and A. De Maio, "Polarimetric Sparse Iterative Procedures for DOA Estimation", submitted and accepted, IEEE Tech Defense, 2023.

* Awarded as «Best Paper – Young scientist»

Thanks for your attention

marco.boddi@unina.it

