

Franca Rocco di Torrepadula Advancing Edge Al Systems for Smart Cities

Tutor:Prof. Mazzoccaco-Tutor:Prof. Di MartinoCycle:XXXVIIYear:Third

Candidate's information

- MSc degree in Computer Engineering (October 2021)
- DIETI Research group/laboratory: SECLAB
- PhD start date 01/11/2021 end date 31/10/2024
- Scholarship type: UNINA
- Periods abroad:
 - University College of Dublin, Ireland. Under the supervision of Prof. Gavin McArdle (24/01/2023-04/02/2023)
 - L3S Research Center, Leibniz University, Hannover, Germany. Under the supervision of Prof.
 Wolfgang Nejdl (06/11/2023-06/03/2024)
- Scientific/Industrial Collaborations:
 - Hitachi Rail Company
 - ETH Zurich

Summary of study activities

• Ad hoc PhD courses / schools:

- Virtualization technologies and their applications
- Statistical data analysis for science and engineering research
- Imprenditorialità Accademica
- IoT Data Analysis
- Semantic artifacts and multimedia knowledge graphs for bio-data integration
- 2023 Spring School in Transferable Skills
- Ethics and AI
- Strategic Orientation for STEM Research & Writing

• Conferences / events attended:

- International Conference on the Quality of Information and Communications Technology (QUATIC2022).
- International Symposium on Web and Wireless Geographical Information Systems (W2GIS2022).
- International Symposium on Web and Wireless Geographical Information Systems (W2GIS2023).
 Winner of the Best Presentation Award for the presentation of the paper Bus Journey Time Prediction with Machine Learning: An Empirical Experience in Two Cities.
- International Symposium on Web and Wireless Geographical Information Systems (W2GIS2024).
- ACM SIGSPATIAL Workshop on Sustainable Mobility.

Research area(s)

- The research primarily focuses on distributing artificial intelligence (AI) within smart city environments to overcome the **privacy** and **energy** limitations of traditional cloud-centric approaches.
- The contribution is positioned within the research fields of **Federated Learning** and **Edge AI**.

Research results

- A Systematic Literature Review on data-driven passenger flow prediciton.
- A visual-based toolkit for mobility analytics
- A methodology for generating synthetic mobility dataset, leveraging Eclipse SUMO.
- A reference architecture for Intelligent Public Transportation Systems.
- FedFlow: A personalized federated learning framework for passenger flow predictive systems
- X-PILOT: A framework for designing on-board and explainable passenger flow predictive systems based on XGBoost
- A workflow for distilling knowledge in low-carbon Edge AI applications, avoiding grid search.

Research Products

	S. Di Martino, E. Landolfi, N. Mazzocca, F. Rocco di Torrepadula , L. L. L. Starace,
[J1]	A visual-based toolkit to support mobility data analytics,
	Expert Systems with Applications [Published]
	A. Cilardo, V. Maisto, N. Mazzocca, F. Rocco Di Torrepadula ,
[J2]	An approach to the systematic characterization of multitask accelerated CNN inference in edge MPSoCs,
	ACMTransactions on Embedded Computing Systems [Published]
	F. Rocco di Torrepadula , S. Di Martino, N. Mazzocca, P. Sannino,
[J3]	A Reference Architecture for Data-Driven Intelligent Public Transportation Systems,
	IEEE Open Journal of Intelligent Transportation Systems [Published]
	F. Rocco di Torrepadula, E. V. Napolitano, S. Di Martino, N. Mazzocca,
[J4]	Machine Learning for public transportation demand prediction: A Systematic Literature Review
	Engineering Applications of Artificial Intelligence [Published]
	L. L. L. Starace, F. Rocco di Torrepadula , S. Di Martino, N. Mazzocca,
[J5]	Vehicular Crowdsensing with High-Mileage Vehicles: Investigating Spatiotemporal Coverage Dynamics in Historical
	Cities with Complex Urban Road Networks,
	Journal of Advanced Transportation [Published]
	M. Barbareschi, A. Emmanuele, N. Mazzocca, F. Rocco di Torrepadula ,
[J6]	Designing On-Board Explainable Passenger Flow Prediction,
	Expert Systems with Applications [Under the 2nd round of revision]
	F. Rocco di Torrepadula, A. Somma, A. De Benedictis, N. Mazzocca,
[J7]	Smart Ecosystems and Digital Twins: an architectural perspective and a FIWARE-based solution,
	IEEE Software [Under the 2nd round of revision]

Research Products

	A. De Benedictis , F. Rocco di Torrepadula , A. Somma,
[C1]	A Digital Twin Architecture for Intelligent Public Transportation Systems: A FIWARE-Based Solution,
	International Symposium on Web and Wireless Geographical Information Systems [Published]
	F. Amato, S. Di Martino, N. Mazzocca, D. Nardone, F. Rocco di Torrepadula , P. Sannino,
[C2]	Bus Passenger Load Prediction: Challenges from an Industrial Experience,
	International Symposium on Web and Wireless Geographical Information Systems [Published]
	A. Cilardo, V. Maisto, N. Mazzocca, F. Rocco di Torrepadula ,
[C3]	A Proposal for FPGA-Accelerated Deep Learning Ensembles in MPSoC Platforms Applied to Malware Detection,
	International Conference on the Quality of Information and Communications Technology. QUATIC [Published]
	L. Dunne , F. Rocco Di Torrepadula , S. Di Martino, G. McArdle, D. Nardone,
[C4]	Bus Journey Time Prediction with Machine Learning: An Empirical Experience in Two Cities,
	International Symposium on Web and Wireless Geographical Information Systems [Published]
	S. Di Martino, N. Mazzocca, F. Rocco Di Torrepadula , L. L. L. Starace,
[C5]	Mobility Data Analytics with KNOT: The KNime mObility Toolkit,
	International Symposium on Web and Wireless Geographical Information Systems [Published]
[C6]	F. Rocco Di Torrepadula , D. Russo, S. Di Martino, N. Mazzocca, P. Sannino,
	Using SUMO towards Proactive Public Mobility: Some Lessons Learned,
	1st ACM SIGSPATIAL Workshop on Sustainable Mobility [Published]

PhD thesis overview: Problem

Smart city services often rely on DNNs (Deep Neural Networks), being the state-of-the-art techniques in many domains. However, given their complexity, these models raise several challenges:

High energy consumptions

Privacy concerns (given their typical cloudcentric deployment)

Low interpretability

PhD thesis overview: Problem

Smart city services often rely on DNNs (Deep Neural Networks), being the state-of-the-art techniques in many domains. However, given their complexity, these models raise several challenges:

High energy consumptions

Privacy concerns (given their typical cloudcentric deployment)

Low interpretability

PhD thesis overview: Objective

Distributing the intelligence within the smart city, to address the concerns of traditional cloud-based systems.

This involves developing energy-efficient models that can be effectively deployed at the edge, while also enhancing interpretability to ensure transparency and trust in AIdriven applications.

PhD thesis overview: Methodology

- Federated Learning (FL) to enable decentralized and collaborative model training across smart city entities, addressing privacy concerns by keeping data localized.
- **Edge AI** for enabling the execution of ML models at the edge, leveraging:
 - The definition of **lightweight models** (e.g. not based on DNNs).
 - Optimizing existing, pre-trained models through Knowledge Distillation (KD).

Contribution 1:

A Personalized FL Framework for Passenger Flow Prediction

Problem

- Passenger Flow (PF) prediction focuses on forecasting the number of people using a specific service based on historical data.
- Privacy is a key concern in PF prediction, as the data often includes sensitive information about passengers' routes, travel patterns, frequently visited locations, and routines.
- FL offers a promising solution to address these privacy concerns, but a significant challenge is handling data heterogeneity, which is common in smart city environments.

State of Art

- The typical PF prediction setting involves training deep learning models (typically RNNs or GNNs) on a central back-end, raising significant security/privacy concerns
- Despite being a valuable solution to privacy concerns in many domains, there is a lack of work aiming at exploiting FL for PF prediction.
- Several proposals have integrated FL into other mobility-related tasks, especially regarding traffic predictions, which typically do not address data heterogeneity.

Contribution

FedFlow: A personalized federated learning framework for passenger flow prediction.

To tackle data heterogeneity:

- A personalized model is realized for each client, giving more emphasis to the most similar clients.
- Similarities are calculated based on publicly available information about clients services.

Results

		Predictive Technique							
Metric	Horizon	NF	ARIMA	XGBoost	CNN	LSTM	Centr	FedAvg	FedFlow
MAE	1	3.58	2.67	2.83	2.80	2.31	2.87	3.67	2.22
	2	5.98	4.82	4.03	3.93	3.23	4.02	5.57	3.11
	3	7.96	6.87	4.80	4.75	3.88	4.83	6.99	3.74
	1	9.07	5.82	6.17	6.88	5.89	7.14	8.52	5.75
RMSE	2	12.53	8.93	7.82	8.64	7.35	8.83	11.17	7.15
	3	15.19	10.94	8.82	9.77	8.31	9.97	13.03	8.08
	1	326.98	61.98	64.93	49.56	36.32	48.24	75.29	34.77
MAPE	2	308.31	117.45	91.94	64.26	49.36	66.89	113.76	47.96
	3	291.69	170.32	109.21	76.82	58.46	80.58	147.35	56.47

Table 1 The average evaluation metrics, with predictive horizon ranging from 1 to 3. The best performance among all models is highlighted.

- Compared to LSTM, the centralized and the FedAvg approaches present a performance drop: a single global model struggles to accommodate the diverse local client data distributions.
- FedFlow addresses the heterogeneity challenge, significantly outperforming the FedAvg and centralized frameworks across all considered metrics.
- It also surpasses the performance of locally trained LSTM models. This improvement is attributed to the collaborative nature of the framework.

Contribution 2:

Designing Lightweight and Explainable PF Predictive Models

Problem

- Being a distribute learning paradigm, FL *enables* the execution of ML/DL models at the edge.
- However, running ML, especially DL, models at the edge introduces significant challenges due to the strict limitations of edge devices, such as constrained computational and storage capabilities.

State of Art

- On the algorithm side, the proposed Edge AI solutions can be broadly classified into two main approaches:
 - Creating smaller and more efficient networks from the outset
 - Compressing existing, pre-trained models through a process known as *model compression*.

Contribution

X-PILOT: a framework for designing onboard and explainable PF prediction based on XGBoost

- XGBoost is a tree-ensemble model that offers high accuracy while reducing computational costs w.r.t DL models.
- Being based on simple trees, many solutions for explaining its predictions are already proposed in the scientific community, e.g. SHAP values.

Results

Table 5.2. MAPE and MAE for each model, averaged across all the considered buses.

	LSTM	CNN	XGBoost	RF	ARIMA
MAPE	23.288	24.003	24.057	24.562	33.113
MAE	3.448	3.525	3.49	3.53	4.55

Table 5.3. Mean time and energy required to complete an in inference in microseconds and milli-Joule respectively.

	ARIMA	XGBoost	CNN	CNN-TL	LSTM	LSTM TL	\mathbf{RF}
$\operatorname{Time}(\operatorname{us})$	10	55	249	147	16614	n.s.	n.s.
Energy(mJ)	0.014	0.06	0.278	0.166	18.4	n.s.	n.s.

- Energy vs Accuracy trade-off (from LSTM to XGBoost):
 - Energy saving: 97.8%.
 - Accuracy reduction: 3.3%.

Contribution 3: Distilling Knowledge for Low-Carbon ML Models

Problem

- Knowledge Distillation (KD) has emerged as a promising technique for ML model compression, however it further complicates the training process as it involves tuning additional hyperparameters.
- Hence, while KD is commonly employed to develop energyefficient models, the tuning process can be inefficient, typically relying on **expensive grid-search** methods.

Stude

State of Art

- Several works demonstrated the effectiveness of the KD approach across different domains.
- However, there is a lack of theoretical work meant to understand why and how KD works.
- An unsolved issue is how to optimally configure the additional hyperparameters, avoiding expensive grid search.

Contribution

A Geometrical Interpretation of KD leveraging the Shannon Entropy

The best hyperparameters configuration mainly depends on:

- The accuracy of the teacher
- The accuracy of the student
- The model capacity gap between the teacher and the student

Contribution

A workflow for designing low-carbon ML models, leveraging knowledge distillation

Results

Increasing number of layers (decreasing MCG)

Discussion

- Energy vs Accuracy trade-off (from ResNet-50 to ResNet-14 on CIFAR-100):
 - Energy saving: 74%.
 - Accuracy reduction: 19%.
 - Accuracy improvement (w.r.t ResNet-14 from scratch): 24%.
- Reduction of training time compared to traditional grid search: 80%.

Conclusions

- This thesis tackled key challenges associated with the employment of deep learning models within smart city environments, with a particular focus on privacy, interpretability, and energy efficiency.
- The goal was to create distributed and privacy-preserving AI ecosystems for smart cities.
- To this purpose three contributions were proposed, positioned in the field of Federated Learning (FL) and Edge AI.

Thank you for your attention

Contact: franca.roccoditorrepadula@unina.it Room 4.03 – building 3/A – via Claudio 21

Franca Rocco di Torrepadula