

Barbara Rossi All-optical ultrasound system for integrated echography inside a needle

Tutor: prof. Antonello Cutolo

Cycle: XXXVIII

Year: Second

My background

- M.Sc. In Biomedical Engineering 25th March 2022
- OptoPower Lab DIETI
- **Tutor**: prof. Antonello Cutolo
- PhD started 1st Nov 2022 (XXXVIII cycle)
- Scholarship funded by UNINA

Research field of interest

Nowadays, there is a growing interest in **precision medicine** and the development of minimally invasive devices aimed at improving patient treatment.

Within the Hospital in the Needle project, this study is focused on <u>minimally invasive photoacoustic imaging technique</u>

Research field of interest

Research activity: Overview

- Problem
 - Lack of a rigorous and comprehensive engineering method for photoacoustic imaging probe optimization.
- Objective
 - Find a rigorous method and exploit modern technology to engineer and optimize the device's performance.
- Methodology
 - ➤ Matlab simulations
 - Comsol Multiphysics simulations

Problem

All-optical ultrasound transducer

Advantages

- **Compact size:** Typically only a few millimeters in dimension.
- High resolution: Capable of producing detailed and precise images.
- Use of non-ionizing signals: Safe and non-invasive, reducing risk for the subject.

<u>Main limitation:</u> Lack of a rigorous and comprehensive engineering method for device optimization, which is crucial for enhancing performance.

Objective

Find a rigorous methods and exploit modern technology to engineering and optimize the device's performance.

Barbara Rossi-YEP2

Detection System

Guggenheim, James A., et al. "Ultrasensitive plano-concave optical microresonators for ultrasound sensing." Nature Photonics 11.11 (2017): 714-719.

The structure is realized using the dip coating technique, which results in poor dimensional control.

PROPOSED AND ANALYZED STRUCTURE

Methodology - Detection System

The analysis was conducted with a **Finite Element Method** approach using the commercial software Comsol Multiphysics.

RESULTS

electrical engineering

Membrane structure

Next Step

Products

[C1]	B. Rossi, P. M. Aiello, M. A. Cutolo, M. Giaquinto, A. Cusano, G.Breglio, A.
	Cutolo, "Polymer-Based Lab-on-Tip Microstructures For Ultrasound Medical
	Diagnostics," 2024 IEEE Sensors Applications Symposium (SAS), Naples, Italy,
	2024, pp. 1-6, doi: 10.1109/SAS60918.2024.10636662.
[P1]	B.Rossi, M.A Cutolo, M. Giaquinto, G.Breglio, A.Cusano, Curved Fabry-Perot
	Ultrasound Detectors: Optical and Mechanical Analysis, Optics & Laser
	Technology Journal (submitted)

- Photonics and Electromagnetics Research Symposium PIERS, April 2024, Chengdu (China)– **Oral Presentation**.
- Italian Conference on Optics and Photonics (ICOP), June 2024, Florence Italy- **Oral Presentation.**
- *IEEE Sensors Applications Symposium SAS*, Napoli, Italy, 25 July2023. Poster presentation.

Summary of study activities

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	-	0.2	7	-	7.20
Bimonth 2	4	0.3	6	-	10.3
Bimonth 3	-	-	8	-	8
Bimonth 4	-	1.5	7	-	8.5
Bimonth 5	4	-	8	-	12
Bimonth 6	-	-	9	-	9
Total	8	2	45		55,3

Course Attended:

- Numerical Methods for Thermal Analysis, Modeling and simulation: Application to Electronic Devices and system, Dott.A.P. Catalano, (Ad Hoc course)
- Innovation and Entrepreneurship, Prof. P. Rippa (Ad Hoc course)

Thank you for your attention!

